Al-Mg合金的强韧化研究

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:yhmlivefor51
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于较低的密度、良好的耐蚀性和可焊性,5000系列Al-Mg合金获得了广泛的应用,然而这类合金一般只具有中等强度,所以提高这类合金的强度意义重大。通常,有两条途径可用来提高Al-Mg合金的强度:高应变量的塑性变形和提高溶质Mg含量。高应变量的塑性变形导致Al-Mg合金的低韧性,为了提高韧性,本文研究了溶质Mg原子对韧性的影响。本工作也研究了提高Mg含量的Al-10wt%Mg合金在中等变形量轧制和退火后的强韧性。为了研究Mg对高应变量的塑性变形Al-Mg合金韧性的影响,本工作对~95%厚度压下量室温轧制的Al-1wt%Mg合金、100°C轧制的Al-4wt.%Mg合金、150°C轧制的Al-7wt.%Mg合金进行了对比研究,发现虽然随着溶质Mg含量增加,超细晶平均尺寸减小、位错密度升高,但均匀延伸率却提高;上述轧制的Al-4wt.%Mg和Al-7wt.%Mg合金分别在200℃和165℃退火后超细晶平均晶粒尺寸与位错密度大致相同,然而Al-7wt.%Mg却有较高的延伸率。以上实验结果表明,溶质Mg原子的存在能提高Al-Mg合金的加工硬化率、提高均匀延伸率(即韧性),其微观机制是溶质-位错之间的相互作用阻碍位错运动,即动态应变时效,体现在应力-应变曲线上的“锯齿”状应力起伏,增强了位错在晶内的存储。对于高Mg含量的Al-10wt%Mg合金,本工作研究了75%厚度压下量室温轧制的合金及其在75℃-200℃退火后的微观组织和拉伸性能。在轧制态及75℃-150℃退火后,合金的微观组织特征为含高密度位错的拉长超细晶,且不存在弥散分布的Al3Mg2相;随着退火温度升高,拉长超细晶粒宽度增大,位错密度降低。75℃-150℃退火合金与轧制态合金相比,屈服强度(yield strength,YS)降低了~8%-~35%,抗拉强度(ultimate tensile strength,UTS)降低了~1%-~12%,均匀延伸率(uniform elongation)提高了~16%-~83%。在200℃退火时由于Al3Mg2相的析出导致韧性大幅降低。通过研究确定最佳退火温度为150℃,对50%和85%厚度压下量的轧制态合金在150℃下进行退火。拉伸测试结果表明,退火处理后合金获得了良好的强韧性配合,50%、85%轧制退火合金的屈服强度、抗拉强度和均匀延伸率分别为303.5 MPa、427.5 MPa、13.3%和457.3 MPa、603.0 MPa、8.3%。基于XRD和TEM显微组织计算的固溶Mg含量、位错密度和平均晶粒尺寸详细讨论了固溶强化、位错强化和晶界强化对屈服强度的贡献值。分析了预先存在的位错和Mg溶质含量对塑性的贡献。75-150℃退火合金位错密度的降低引起的位错积累增加的趋势超过了由Mg溶质浓度降低引起的位错湮灭增加的趋势,表明均匀延伸率随着退火温度的升高而增加。
其他文献
现代工业推动了我国经济日益发展并壮大,使人民生活品质有了显著提升,然而,它为人们带来便利的同时也逐渐破坏了人们赖以生存的家园。甲醛(HCHO)早在2017年被世卫组织列为一类致癌物,是一种对人体有毒有害的气体。所以对甲醛进行及时有效的检测是极其重要的,目前对甲醛的检测手段应用最为广泛当属金属氧化物半导体(MOS)气敏传感器,但因其在工作中极易受到其他气体的干扰而影响其对甲醛的敏感度,故本文利用丝网
学位
二维功能材料一直以来因高比表面积和高电荷转移而受到催化领域研究人员的广泛关注。通过对二维材料尺寸以及缺陷的控制,能够精确调控材料内部电子结构,从而显著改性催化效果。另外,二维材料不仅可以单独作为催化剂使用,也可以作为载体来搭载单原子以聚集电荷于活性点位上,从而增强催化能力。然而对于传统二维材料催化剂,尽管在催化活性上表现出明显的改善,但是在催化条件下的稳定性以及反应的选择性仍然是十分不足的。发掘新
学位
作为目前研究最为广泛的太阳能电池,有机—无机杂化钙钛矿(CH3NH3Pb I3)太阳能电池的认证光电转换效率已经达到25.5%,接近传统的晶硅太阳能电池。但是,其有机组分的不稳定阻碍了太阳能电池进一步的发展。全无机α-Cs Pb I3量子点在具有优异光学性能的同时具有高的热稳定性,是一种可以用来替代CH3NH3Pb I3的理想光吸收材料。但是,α-Cs Pb I3量子点的容忍因子较小,导致其相稳定
学位
仿生材料是近二十年里材料科学研究的热点。主要思想和方法是:发现和研究自然物质特殊或者有意义的结构和功能,然后通过各种制备手段获得类似结构的材料,进而得到类似的功能。几丁质/壳聚糖作为重要的天然高分子资源,可在建设资源节约型和环境友好型社会中发挥巨大作用。本论文以虾壳中提取的几丁质为模板原材料,通过自组装原理,在溶胶凝-胶体系下制备出具有仿生结构的几丁质/氧化硅有机无机杂化材料。实验结果证明,通过溶
学位
本文采用粉煤灰调节水泥稳定钢渣的宏观结构、消纳钢渣膨胀产物Ca(OH)2,以抑制水泥稳定钢渣的不均匀膨胀。研究了水泥粉煤灰稳定钢渣基层材料的力学性能与耐久性能,重点探讨了粉煤灰对水泥稳定钢渣膨胀行为的影响规律,并利用测试技术手段揭示了粉煤灰对钢渣膨胀的抑制机理。基于此,对比研究了不同粒径钢渣用于水泥粉煤灰稳定类路面基层材料的力学性能与体积稳定性的差异,成功铺筑了钢渣基层试验路,具有明显的经济效益。
学位
B4C-TaB2-SiC系共晶复合材料有望兼具Ta B2、B4C和Si C三者优良的性能,有望广泛应用于发动机、高超音速飞行器、炉体和高温屏蔽等。本研究采用电弧熔炼法制备B4C-TaB2-SiC系共晶复合材料,探索了B4C-TaB2-SiC系共晶复合材料的共晶点,重点研究了共晶复合材料的微观结构以及机械性能、电性能和热性能,探讨材料的组成与微观结构对性能的影响。采用电弧熔炼法制备B4C-Ta B2
学位
随着现代化进程不断深入,城市居民人均机动车保有量不断上升,燃油汽车排放的二氧化硫,氮氧化物等对空气质量造成很大影响。汽、柴油的大量消耗对我国石油资源战略储备造成了影响。由电能驱动的电动汽车得到官方政策支持和民间推崇,然而,电动汽车电池能量密度制约了电动汽车的长远发展,为了满足里程需求,研究者们将目光转向了下一代高能量密度锂电池的研发。锂金属负极因为具有高理论容量被认为是下一代电池最有潜力的负极材料
学位
作为中红外窗口和传感器的关键基础材料,钙铝玻璃广受关注,是该领域的热点材料之一。然而,钙铝酸盐熔点较高,其对应的熔体在冷却过程极易析晶,传统熔融淬冷法制备的钙铝玻璃组分范围极窄。因此开发新型玻璃制备技术和探究钙铝玻璃的玻璃形成能力是拓展其应用的关键;玻璃作为一种脆性材料,在实际应用中存在许多问题,如何提高玻璃的抗碎裂性而不损害其硬度一直是玻璃科学中亟待解决的难题。在铝硅酸盐玻璃中,铝一般作为网络中
学位
纳米颗粒是纳米材料制备过程中介于单原子与块体的中间产物,其展现出许多不同于块体的奇特物理和化学性能。因此,对纳米颗粒制备过程进行精确的控制可以使纳米颗粒具有优异的力、光、磁和电学性能,这对各领域的发展起着至关重要的作用。相较于固相法和液相法,气相法制备的纳米微粒具有纯度高、粒径分布集中、颗粒分散性好等优点,因而在诸多领域中有着广泛的应用。但由于实验技术和费用成本的限制,很难从原子/分子的尺度去观察
学位
随着现代化工业的快速发展,能源的消耗量越来越大,另外,大规模的工业活动导致大量废水排放到环境中,造成了严重的环境污染。因此,研究人员致力于寻求一种绿色环保且高效的方法来解决上述能源和环境问题。其中,半导体光催化技术作为一种热门的研究方向,受到了人们的青睐。在众多的半导体光催化剂中,Ce O2具有较高的储存量和丰富的氧空位(Vo),且耐光腐蚀、稳定性好、无毒性,因此表现出良好的光催化应用前景。然而,
学位