【摘 要】
:
太阳能是通过太阳热辐射产生的最重要的热源,太阳能光伏电池可以进行直接的光能和电能的转换。随着研究者们不断的开拓与创新,在传统太阳能电池中引入具有较强电荷转移能力或利于多激子产生的有机半导体材料能够极大的提高电池的光电转换效率,且有望突破太阳能电池理论转化极限~33%(Shockely-Quessier limit)。目前,含氮类的杂环有机化合物在染料敏化和钙钛矿太阳能电池等领域都已经有了广泛的应用
论文部分内容阅读
太阳能是通过太阳热辐射产生的最重要的热源,太阳能光伏电池可以进行直接的光能和电能的转换。随着研究者们不断的开拓与创新,在传统太阳能电池中引入具有较强电荷转移能力或利于多激子产生的有机半导体材料能够极大的提高电池的光电转换效率,且有望突破太阳能电池理论转化极限~33%(Shockely-Quessier limit)。目前,含氮类的杂环有机化合物在染料敏化和钙钛矿太阳能电池等领域都已经有了广泛的应用。部分含氮类有机化合物也已经被证明具有很强的电荷转移和能量转移的性能,且已经被应用到了不同的电子元件与光伏器件当中。此外,在单节太阳能电池中引入单线态裂变材料也有利于电池内的多激子产生。相比于无机半导体中激发态较短的寿命,在有机半导体材料中的单线态裂变过程更有利于产生双倍的电荷。本篇论文通过应用与飞秒脉冲激光联用的时间分辨光谱技术(时间相关单光子计数,荧光上转换和飞秒泵浦-探测等设备),分别探究了七种新型的氮杂化合物(Dibenzophenanthroline(DBP1-6),5-azatetracene)的光物理性质。此外,也详细研究了六联苯体系中的激发态动力学超快弛豫过程,详细的解释了单线态裂变、系间窜跃与极化子产生等过程,并得到一系列研究结果:1.探究了七个新型氮杂化合物的光学性质。氮原子的取代位置对其的光电性质有很大的影响。当取代1,7-位置(DBP2和DBP5),由于反向的N取代导致了更强的电子云离域使其荧光发射被高效的电荷转移过程所猝灭。相比之下,DBP3(位于4,7-取代位)的构型会使其本身形成聚集体从而形成激基缔合物,表现出较强的发光特性。此外,双(苯乙基)取代基的引入使DBPs异构体的π结构得到了扩展,由于临近效应导致π-π*和n-π*的能隙变大,从而延长了激发态寿命。此外,在5-氮杂并四苯和并四苯中,也是由于临近效应诱导前者激发单线态的π-π*和n-π*之间的能量差距较大使其荧光量子产率增加。这一见解也可应用于其他杂环烯烃,并设计具有最佳光学性质的新杂环烯。2.利用飞秒泵浦-探测和时间分辨荧光光谱研究了六联苯薄膜的激发态动力学。在六联苯薄膜中发现了不同的荧光发射物种:六联苯单体、晶体和聚集体。另外应用飞秒瞬态吸收,在六联苯薄膜中检测到了从激发单线态的振动能级发出的超快(30 fs)单线态裂变过程。同时检测到了另一种从最低激发单线态历经4.5 ps的系间窜跃过程。当激发到更高能级的时候会诱导更高效的单线态裂变。此外,在不同的激发条件下还发现了超快极化子的生成。实验过程以及数据分析也都结合了理论计算来进行。
其他文献
二氧化碳是重要的碳一资源,将其转化为有机化合物是二氧化碳利用的重要途径之一。近年来,中国提出了“碳达峰、碳中和”的战略目标,二氧化碳的转化愈显重要。其中,二氧化碳转化为氨基甲酸酯或环状碳酸酯是其化学转化的研究热点。因此,开发新型高效的将二氧化碳转化为这两类化合物的反应体系具有重要意义。基于此,本文的主要研究内容包括以下两个部分:1.以二氧化碳、苯胺及其衍生物、溴代烃为原料,1,8-二氮杂二环十一碳
纤维素作为一种自然界中最为丰富的天然有机高分子材料,具有取之不尽用之不竭的优点。通过将纤维素中的非结晶区去除保留结晶区可以制备纳米纤维素,纳米纤维素具有优异的特性,如可再生性、生物降解性、生物相容性,在人们的日常生活中具有巨大的应用潜力。本文通过乙二醇醇解法分别从滤纸和天然花生壳中成功制备出了纤维素纳米晶和纤维素纳米纤维,并将两种纳米纤维素进行改性添加到聚乳酸中制备纳米复合材料以增强聚乳酸的力学性
C-H功能化可将常见的惰性C-H键直接转化为C-C/C-X键(C-O、C-N、C-S键等),因此在大宗化学品的制备和药物中间体的官能化中具有重要意义。C-H功能化具有合成步骤短和原子经济性高的特点,被认为是有机化学中的“圣杯”,在过去的几十年中得到了广泛的研究。传统方式实现C-H功能化通常需要加入钯、铱和钌等贵金属催化剂或在比较苛刻的条件下进行,因此开发温和、经济和绿色的催化体系成为化学家们的首要
随着社会的快速发展,能源与环境问题日益加剧,威胁着人类的生存。目前全球能源消耗仍以化石资源为主,它的使用不仅会导致能源短缺,同时会释放大量氮氧化物等污染性气体,带来不可忽视的环境污染。目前人们致力于开发能够替代石化资源的可再生资源,其中生物质资源由于其低成本及可再生性受到广泛关注。同时,尽可能地消除化石燃烧产生的NOx等污染物也是缓解环境问题的重要手段。分子筛作为一种优异的多相催化剂,凭借其规整的
有机叔膦化合物具有结构易修饰、电子和空间性质可调等特点,在过渡金属催化和有机小分子催化领域得到广泛关注。截至目前,虽然一系列结构多样的商品化有机叔膦及类型丰富的有机叔膦参与的催化转化体系被先后报道,围绕有机叔膦体系开展“新结构、新反应、新机理”的研究工作仍然具有巨大的发展空间和研究价值。有机叔膦化合物的化学特性与磷原子上的孤对电子密切有关,通过对分子骨架中磷原子进行官能团修饰,是设计合成新型强亲核
为了更好地进行应急通信的系统设计和技术研发,从而大力提升我国的安全风险防范和应急处置能力,面向应急通信场景开展了多无人机协同信道建模研究。首先,构建了城市地震和郊区暴雪两大典型应急环境中多无人机协同救援通信场景信道数据集,并据此对多无人机协同应急通信信道参数及其统计特性进行深度分析。其次,针对多无人机协同应急通信提出了一种更加通用的基于随机统计建模的信道模型,计算了多无人机协同应急通信下的信道冲激
聚烯烃是日常生活和工业生产不可或缺的基础材料,但碳氢的组成导致聚烯烃具有疏水性和非极性,与极性基质相容性差。引入极性官能团可以有效改善这些缺点,并实现聚烯烃性能的调控。在后过渡金属催化烯烃与极性单体共聚领域,双金属协同效应得到了科学界的广泛关注。本文设计和合成了一系列大位阻邻苯桥连双金属α-二亚胺Ni(Ⅱ)和Pd(Ⅱ)配合物,并用于乙烯聚合及与极性单体共聚研究。与单金属配合物相比,双金属Ni(Ⅱ)
全无机钙钛矿太阳能电池由于较出色的热稳定性受到了广泛地关注。其光电转换效率从最初的2.9%提高到目前的20.37%,展现出巨大的应用潜力。虽然全无机钙钛矿发展势头迅猛,但是其在光电转换过程中会出现较大的能量损失。这主要是由于钙钛矿薄膜中的缺陷以及界面之间的载流子非辐射重组所致,严重影响器件的光电转换效率和稳定性。通过界面修饰策略钝化钙钛矿及其相关界面的缺陷,促使界面之间能级匹配和抑制载流子复合,是
本论文以新型硫桥联钌钼配合物为反应平台,利用异核金属配合物独特的反应性实现了多种含氮底物的活化与转化。为从分子层面认识固氮酶活性中心的异核协同效应提供了重要的实验模型。首先,考察了配合物[Cp*Ru(μ-η~4:η~2-bdt)Mo Cl2Cp*](Cp*=η~5-C5Me5,bdt=benzene-1,2-dithiolate)(1)与无水肼的反应性,结果表明钌钼中心可以实现肼的N–N和N–H键
由于其出色的光学性能,氟代聚酰亚胺已广泛应用于柔性显示器等光电子领域。现如今,光电子领域对氟代聚酰亚胺的需求量与日俱增。本文研究了三种氟代聚酰亚胺二胺单体的合成方法,并用这三种二胺与商业可得的二酐单体制备氟代聚酰亚胺。第一部分研究了4,4’-(1,1’-双(4-氨基苯氧基))八氟联苯二胺单体的合成方法。首先以五氟苯甲酸与五氟溴苯作为起始原料,铜催化脱羧偶联合成了十氟联苯。对催化剂用量、原料配比、溶