两类时滞微分方程的Hopf-zero分支分析

来源 :东北林业大学 | 被引量 : 0次 | 上传用户:jiaojiao82
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要利用中心流形理论与Faria和Magalhaes规范型方法,从理论和数值模拟两个方面研究了时滞耦合van der Pol振子模型和时滞Oregonator振子模型。  (一)研究时滞耦合van der Pol振子模型的Hopf-pitchfork分支。  分析了时滞对系统的影响,给出了系统产生Hopf-pitchfork分支的条件,并且计算出在中心流形上简化系统的规范型;从理论和数值模拟两个方面揭示了当时滞项和系数项在临界点附近扰动时,van der Pol振子系统会出现一对稳定的非平凡平衡点、稳定的平凡平衡点、稳定的周期轨、一对稳定的非平凡平衡点与稳定的周期轨共存等现象。最后,数值模拟验证理论结果。  (二)研究时滞Oregonator振子模型的Hopf-zero分支。  通过分析特征方程的特征根分布的情况,找到了Oregonator振子发生Hopf-zero分支的条件,并且得到了系统在产生Hopf-zero分支临界点附近的规范型和系统参数的分支图和相图。在此基础上,发现saddle-node分支和pitchfork分支分别发生在M和N处;Hopf分支和heteroclinic分支发生在H和S处。最后,通过数值模拟验证了已得到的理论结果。
其他文献
本文研究的主要内容包括两个方面:两类孤子方程的可积扩展模型与Hirota双线性方法求解孤立子方程.在第一章中,概述了孤立子理论的产生及其发展、研究概况及其研究意义.在第二章中
针对一类含常数时滞的不确定基因调控网络,设计了状态反馈控制器,使得闭环系统鲁棒渐近稳定,并且其线性二次性能指标有上界。基于李雅普诺夫稳定性理论和线性不等式技术,给出
结构矩阵是一类比较常见的矩阵,比如循环矩阵,Toeplitz、Hankel、Frobenius、Sylvester、Subresultant、Bezout、Vandermonde、Cauchy、Loewner和Pick矩阵经常出现在代数和数值
本文对Cahn-Hilliard方程的初边值问题进行了数值研究,提出了几个新型有限差分格式,并对数值解的存在性、守恒性、稳定性和收敛性进行了详细分析。  文章首先证明了本文格式
随着中国老年化程度的加重,脑疾病病发程度日益加重。因此,借助医学影像技术对疾病进行临床辅助诊断具有重要意义。核磁共振成像(MRI)因其对人体没有任何电离辐射伤害,对软组
变系数部分线性模型涵盖了部分线性模型等很多重要的半参数模型,它的优势在于一方面很好地结合了线性模型易于解释,易于构造估计和进行统计检验,以及非参数模型比较稳健的特
复双曲空间上的离散群与基本域是近年来国内外数学家关注的热点之一,在离散群的研究中,找到一个群的离散性条件是很重要的,在PU(2,1;C)上已有很多论文对此进行研究,并且得到了
本文采用全离散混合有限元方法和混合体积元方法模拟了纯纵向运动初值问题,得到了这两种方法离散解的误差估计.  第二章在前人工作的基础上,继续讨论下列均匀棒纯纵向运动
在计算机视觉领域中,图像的不变特征提取应用广泛。图像矩是描述图像形状全局特征的重要技术。Hu矩可提取相似变换的不变特征,仿射不变矩量可提取仿射不变特征,然而这些传统
广义系统比正常系统复杂很多,因此其相关求解与正常系统的相比,也相对复杂和困难。广义系统的相关求解算法对广义系统的研究和发展起着至关重要的作用,但其通用的求解算法的