光纤随机激光长距离点式传感光谱特征研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:visualerren
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光纤随机激光器作为随机激光器的重要分支,相关研究人员已经揭示了其具有大范围波长可调性、窄线宽、高功率输出等特性。正是由于这些独特的优势,其已经在光纤传感、光成像、光通信等领域得到重要的应用。特别是在长距离光纤传感系统中,基于光纤随机激光的传感系统不仅具有传统光纤点式传感系统结构简单、抗电磁干扰、灵敏度高的特点,而且具有响应时间短、传感器可复用、精度不受光源波长漂移、链路温度变化影响等优势,非常适用于长距离高压输电线、铁路、石油和天然气管道等基础设施的安全检测中。同时,高阶光纤随机激光的功率分布向光纤尾端延伸,可提高尾端传感信号的信噪比,实现超长距离点式传感。目前对基于光纤随机激光的传感系统研究大部分都集中长距离单点传感方面。对于超长距离多点传感系统还缺少深入的探索,特别是缺少可精确描述高阶光纤随机激光长距离传感系统光谱特征的仿真模型。因此,针对高阶随机激光多点传感系统中光谱特性仿真这一关键问题,本文开展了以下研究工作:(1)针对于高阶随机激光的光谱仿真问题,本文对传统功率平衡模型进行改进,使得改进后的模型能够描述系统描述高阶随机激光系统的频谱特性。(2)为探究改进后模型能否应用在高阶随机激光系统中,保持随机激光的一阶半开腔结构不变,通过在二阶全开腔、二阶半开腔以及传感FBG间隔10km放置的二阶半开腔三种不同的随机激光结构下,将仿真结果和实验结果对比分析,仿真和实验结果高度吻合,验证了本文提出的光谱仿真模型准确性。(3)本文利用改进后的高阶光纤随机激光仿真模型设计并实现了基于二阶随机激光的150km超长距离多点点式传感系统,实验得到的传感信号波长与应变的线性拟合优度高达0.999。针对于系统中传感信号信噪比差距过大问题,采用了传感FBG对间隔10km放置的方案,有效的缩小了传感信号的功率差距,达到了系统功率优化的目的。本文提出的高阶随机光谱仿真模型可以用来描述随机激光的光谱特性,通过多组实验验证了其正确性,并且已经应用于二阶长距离(150km)多点传感系统的设计与功率优化。本文已经证明该仿真模型能够快速、准确地计算不同传感距离下,基于高阶随机激光的长距离多点传感系统的光谱信号特征,为此类传感系统的设计提供了可靠的平台。
其他文献
近年来,电网事故在我国各个地区相继发生,这不仅会扰乱人们的正常生活,还会给国家经济带来不可估量的损失。为了减少电网事故的发生,需要对输电线运行状态进行有效监测。基于随机光纤激光器的点式光纤传感系统具有抗电磁干扰、信噪比高、长距离传感等优势,极其适合应用于电网系统中。然而,随着国家电网规模的扩张,如何进一步提升点式光纤传感系统的性能是今后需要解决的问题。本文在特种传感光纤光缆联合实验室的支持下将一种
声波是信息的重要载体,声波传感技术在石油管道泄漏、设备健康监测、医疗诊断等各个领域有巨大的应用需求。传统的声波传感器多为电子式声波传感器,而随着对光纤传感技术研究的深入,各种光纤声波传感器得到了快速发展。同电子式声波传感器相比,光纤声波传感器体积小、重量轻、检测灵敏度高、抗电磁干扰能力强,能够在极端恶劣环境下使用,并且,光纤较小的传输损耗使得光纤声波传感器能够实现高质量的遥测遥感。近年来,各种原理
现如今的移动设备端产生的应用日渐复杂,需要更强的计算能力来处理,移动边缘计算(MEC)为处理这种任务提供了有效的途径。在移动边缘计算中的任务的卸载和资源的分配问题一直是其中的关键问题。若能实时地做出正确的计算任务卸载决策,合理分配好网络资源和计算资源,对于提升移动边缘计算的服务性能,提高用户体验具有重要的意义。近几年来,强化学习技术不断发展,它在MEC中的应用备受关注。由于MEC场景下环境的不确定
随着互联网技术的飞速发展,人类社会积累了大量的理论知识与实践经验。知识图谱以其高度凝练的语义网络结构,成为一种高效的知识表示手段。知识图谱为人们生活中的多个领域提供便利,包括搜索引擎、问答系统、医疗诊断等等。虽然知识图谱规模以指数级的速度增长,但仍然存在稀疏性与不完整性的问题,如何有效挖掘知识图谱的隐藏语义,推理出潜在事实是一个亟须解决的问题。目前深度学习在自然语言领域取得了突破性的进展,尤其在知
混沌保密光通信依靠复杂的混沌信号实现对传输消息的隐藏和加密,具有良好的加密效果,在保密通信领域中发展前景广阔。其中,外腔反馈半导体激光器凭借其结构简单的优势在混沌光通信中有着重要的应用。但是由于需要发送端和接收端拥有一样参数的激光器,才可以实现高质量的混沌同步,而在实际中,很难找到多个参数完全一致的激光器,这限制了其进一步发展。近些年来,得益于计算机算力的快速提升和新算法的提出,神经网络得到了快速
信号调制作为当下通信过程中必不可少的一环,一直对整个通信系统整体性能以及传输能力产生着极大的影响,而随着现代无线通信技术的发展,调制信号的种类和方式也在不断变多,通信环境中调制信号的区分也变得愈发困难。因而调制识别这种对未知调制信号进行调制种类判断和分类的方法,在电子侦察、电子对抗、频谱检测等多种非合作通信场景下的接收机设计中都有着极大的研究意义,影响着后续通信信号的解调以及通信参数提取的实际性能
近年来,自主移动机器人发展迅速,影响着社会生产生活的各方各面并在其中发挥着愈发重要的作用。基于视觉的同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)技术是自主移动机器人的核心技术,其中的闭环检测(Loop Closure Detection,LCD)环节通过辨别移动机器人是否已访问过当前位置辅助构建全局一致的地图。然而,在实际应用中,光照、
随着智能电子产品中的印刷电路板(Printed Circuit Board,PCB)越来越趋向于小型化,且板上元件密度也越来越大,从而导致PCB布线工作也变得越来越复杂。但是当前电子设计自动化(Electronic Design Automation,EDA)工具内置的自动布线功能布线速度慢且布通率低,当前PCB布线工作仍然主要依赖于人工,从而使得在工业PCB设计过程中仍需要消耗大量的人力资源。因
卷积神经网络近年来成为了解决各类视觉任务的主流选择,包括图像分类,检测跟踪,动作及意图识别等领域。卷积神经网络由一系列卷积层层堆叠构成,而传统卷积层存在着参数量和计算量大的问题,同时网络深度和宽度的提升进一步加剧参数量和计算量的问题,使得这些网络模型往往无法顺利进行移动端部署。因此设计高效的卷积神经网络具有重大的学术及工程价值。针对以上问题,本文提出了一种高效的分组卷积单元,并提出了一种基于深度可
随着工业物联网中信息量与应用计算复杂度的增加,其中资源受限的设备越来越依赖计算卸载技术。计算卸载技术可以将物联网中轻量级设备所产生的计算需求和数据转移到具有充足计算资源的节点上。一方面可以节约轻量级设备宝贵的计算、存储以及能量资源,另一方面还可以满足应用较高的时延需求。目前计算卸载可分为两种模式,源驱动和目标驱动的计算卸载模式。当前大多数传统计算卸载决策算法都以源驱动计算卸载模式为研究对象,而在新