【摘 要】
:
在第五代移动网络快速普及的背景下,互联网中吞吐的海量流量数据种类繁多,增加了网络流量分类问题的难度,对分类器的速度和准确性提出了更高的要求。如何通过分析网络流量实现网络态势感知,及时发现网络异常情况并采取针对性处理措施,对于实施网络安全审查制度,加强网络安全管理,检测和抵御网络入侵,维护国家网络安全等都有着重要意义。传统的基于端口的分类方法在日益复杂的网络环境中分类性能不可靠,基于深度包检测技术的
论文部分内容阅读
在第五代移动网络快速普及的背景下,互联网中吞吐的海量流量数据种类繁多,增加了网络流量分类问题的难度,对分类器的速度和准确性提出了更高的要求。如何通过分析网络流量实现网络态势感知,及时发现网络异常情况并采取针对性处理措施,对于实施网络安全审查制度,加强网络安全管理,检测和抵御网络入侵,维护国家网络安全等都有着重要意义。传统的基于端口的分类方法在日益复杂的网络环境中分类性能不可靠,基于深度包检测技术的分类方法不适用于加密网络流量的分类。而基于机器学习分类方法具有良好的分类性能,同时克服了深度包检测无法识别加密网络流量的问题,是近年来流量分类问题的研究热点。本文在机器学习的框架内,针对现有方法的不足,在两种深度学习模型中引入深度流检测技术,提出了结合深度流检测与深度学习的网络流量分类方法。本文的主要研究内容及创新工作如下:1.研究了传统的网络流量分类方法,分析了各个方法的技术原理,总结每种方法的优缺点,针对现有的方法的缺陷,在一维卷积神经网络和堆叠式自动编码器两种深度学习模型中引入深度流检测技术,设计了改进的神经网络模型,将数据流特征下沉到数据包,把数据包特征和数据流特征统一在一个网络模型中,综合了数据包中字节的空间相关性和数据包序列间的时间相关性,提高模型的分类性能,同时避免批量误判。2.本文采用了公开的加密流量数据集ISCX 2016 VPN-non VPN数据集作为实验的数据集,对数据集的数据量分布进行了分析,针对数据集存在的严重的类别不均衡问题,研究了常见的数据集平衡处理方法,根据具体的流量分类的研究场景,提出了基于流特征共享的SMOTE算法,综合考虑了数据包和流属性,使得上采样获得的新样本与原样本属于同一类别且归属于同一条流,使数据样本具有更好的数据连续性,基于提出的流特征共享的SMOTE算法改善了数据集中的流量类别不均衡问题。3.针对卷积神经网络和堆叠式自编码器两种深度学习算法,分别利用传统模型与改进模型进行了对比实验和分析。提出的方法在加密流量数据集ISCX 2016VPN-non VPN上取得了优秀的分类效果。在常规网络流量的分类实验中,提出的改进模型对所有类别的准确性均在90%以上,其中有12类的准确率高于99%,分类性能非常优秀,相对于传统的一维卷积神经网络有明显提升,尤其是Email类和Skype类的F1分数比传统模型分别高出18%和14%。在含加密网络流量的混合网络流量分类实验中,提出的改进模型对所有类别的准确性均在90%以上,其中有11类的准确率高于90%,分类性能优秀,且无明显缺陷,相对于传统的堆叠式自动编码器有明显提升。其中对VPN:Chat类的F1分数比传统模型高15%,对VPN:Email类和VPN:Torrent类的召回率比传统模型均高出13%。
其他文献
与单个飞行器相比,飞行器集群具有低成本、高效率、抗损耗等特点。因此飞行器集群在战场上得到了广泛的应用,是未来战场环境发展的重要趋势,同时也给国防防御技术带来了巨大的挑战。采用低成本集群对抗集群的作战方式,能够有效的消除飞行器集群带来的威胁。论文面向飞行器拦截对抗空中集群目标的场景,在实际作战中飞行器为拦截导弹,拦截对象为集群无人机,研究多飞行器智能协同制导与控制问题,实现多飞行器自主协同作战,对未
伴随着深度学习的发展,尤其是卷积神经网络(Convolutional Neural Networks,CNN)的更新迭代,图像分类及目标检测方法获得了显著进步,但即使是最先进的模型也仅具有非常有限的旋转不变性。当输入数据在空间经过旋转后,由于原始模型的滤波器是在直立样本中打磨学习,因此模型将旋转前后的图像特征视为完全不相同的两类,导致最终的识别效果大幅度下降。已知的解决方法有训练数据的增强,以及通
深度学习发展至今,学术界逐渐将心电信号的研究目光转移至传统方法与深度学习相结合的研究上,原因在于心电信号的广泛数字化,促进了深度学习在心电信号上的应用。传统的心电信号标准化解释包含信号预处理、手工特征提取、以及心电信号分类三个部分,每个部分既相互独立又相互依赖,例如手工设计特征的泛化性与心电信号分类模型的性能息息相关。基于深度学习的心电信号分类能够做到端到端的训练,不依赖于信号预处理和手工特征选取
近年来,步态识别等生物特征领域的研究越来越被人们所关注。步态识别不同于人脸、虹膜识别等静态识别,这种方法可以通过在远处拍摄视频来进行识别,而不需要使用过多局部细节,克服了当前生物识别的一些局限性。步态识别技术优势明显,可以克服当前人脸识别等方法的缺点,能够在复杂场景下获得较为广泛的应用。提高步态身份识别的准确率有助于提升效率、减少工作量,尤其在车站行人身份检测、身份验证等方面的效率将会有非常大的进
随着人工智能与智能制造逐渐兴起,为适应复杂多变的外部环境,智能化技术成为当前的研究热点。为提高控制系统的智能化程度,本文搭建了视觉感知的智能欠驱动机械臂平台,设计了基于机械臂末端视觉的目标检测、跟踪算法,并对其性能进行了验证。本文的主要工作有:一、设计了用于图像特征提取的视觉感知模块。本模块经图像预处理、目标检测、特征点提取及更新的流程后,可实现对目标特征点的有效提取。基于对本文环境下相机成像特点
近年来,随着定位导航技术的逐渐成熟,使移动机器人在未知环境中的自主导航成为可能。但是即使是当前最先进的同步定位与建图(SLAM)技术,也会因为传感器中的噪声而给地图中障碍物的定位带来不确定性。典型的路径规划算法都关注如何降低这种不确定性,而本文将从另一个角度来解决这种信息的不确定性。针对环境信息的不确定性问题,提出了一种基于Voronoi图与不确定性势场算法的路径规划方法,使移动机器人在信息不确定
推荐系统作为一种个性化的信息过滤工具,随着大数据时代的到来得到了越来越广泛的应用。与此同时,推荐系统也面临着发展和挑战,比如数据稀疏性、缺乏可解释性等问题。现有的推荐模型难以处理稀疏的结构化数据,忽略了用户行为序列蕴藏的偏好信息,并且无法为推荐结果提供合理的解释。为解决上述问题,本文围绕点击率预测任务,深入研究基于深度学习的推荐算法,提出了两种可解释个性化推荐模型,并设计实现了一个金融产品推荐系统
自从第一个巡航遥控机器人“月面巡视器1号”降落在月球上,开发一种能够自主探测月球和火星等地外天体的星表巡视器成为了航天领域长期关注的热点问题之一。路径规划是月面巡视器在星表自主作业、安全漫游与探测的重要保障。目前月面巡视器路径规划的研究工作多集中于地形可通过性分析上,很少涉及光照、通信等潜在约束条件。人类的决策有助于巡视器应对自主导航功能无法处理的突发情况,提高整个路径规划系统的性能。本文针对现有
包含加速度计、陀螺仪和磁力计的微机电系统(Microelectronic Mechanical System,MEMS)MARG(magnetic,angular rate and gravity,MARG)传感器阵列被广泛应用于多运动载体姿态测量。目前,多传感器数据融合理论发展迅猛,众多MARG数据融合方法被提出以估计载体的位置、速度和姿态。然而对于多载体协同MARG姿态估计,依然面临运动加速度
随着人工智能技术的深入发展,移动机器人在社会生活各个领域的作用越来越突显。其中,SLAM技术是移动机器人研究领域一项至关重要的技术。SLAM技术的重要特征就是“同时”,即定位与地图构建同时进行,通过这一技术,结合路径规划算法移动机器人即可实现自主运动。而无论是机器人的定位还是环境地图的构建,都需通过外部的传感器对周围环境的变化进行实时的感知。其中激光雷达以其精准度高、获取数据速度快以及扫描范围广等