月面巡视器路径规划方法研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:crowboy2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自从第一个巡航遥控机器人“月面巡视器1号”降落在月球上,开发一种能够自主探测月球和火星等地外天体的星表巡视器成为了航天领域长期关注的热点问题之一。路径规划是月面巡视器在星表自主作业、安全漫游与探测的重要保障。目前月面巡视器路径规划的研究工作多集中于地形可通过性分析上,很少涉及光照、通信等潜在约束条件。人类的决策有助于巡视器应对自主导航功能无法处理的突发情况,提高整个路径规划系统的性能。本文针对现有月面巡视器路径规划问题中存在环境适应性不足,应对突发事件能力有限等问题,综合考虑环境约束、巡视器本体运动约束和人机协同机制,开展月面巡视器路径规划研究,旨在提高路径规划成功率,改善巡视器的环境适应性和行驶安全性。复杂月面环境和月面巡视器本体的运动性能都将影响路径规划的有效实施。本文首先从制约路径规划有效实施的月面复杂环境约束和月面巡视器本体运动约束入手,开展路径规划约束条件的建模方法研究。针对月面探测场景,建立描述地形、光照和通信的数学模型。从巡视器本体的运动特性入手,结合月面巡视器上坡、下坡和越障三种典型运动状态,建立运动约束模型。然后,基于建立的月面环境约束,提出并开发了一种改进的A*路径规划算法。基于美国地质勘探局官网发布的月面数字高程图(Digital Elevation Model,DEM),结合太阳、地球角度以及巡视器运动性能参数对月面DEM的危险区域进行标注,为路径规划提供依据。通过把地形、光照、通信等环境因素加权融合,形成改进A*算法的代价估计函数,实现了考虑环境约束的路径规划。MATLAB仿真环境下的算法性能仿真实验结果表明,改进后的A*算法规划出的路径能够有效避开陡峭斜坡、光照阴影和通信不可见等危险区域,比改进前更加适合月面探测场景。在此基础上,将巡视器的所有活动分为移动、感知、探测、充电、数传和休眠六种行为,建立了六种行为的时间消耗模型,完成环境约束动态变化下的全局路径规划实验。接着,考虑到现有月面DEM分辨精度低,难以真实反映月面地形中的月岩、陨石坑等影响月面巡视器正常行进的小型障碍物,本文提出了一种基于D*的改进局部路径规划算法,保证巡视器在有未知障碍物的场景下也能够安全可靠行驶。该方法的核心思想是将月面环境约束、巡视器转向角度、障碍物距离等因素加权融合到D*算法的移动成本函数。利用在Unity中建立的模拟月面环境,开展了路径规划算法的性能验证。MATLAB和GAZEBO仿真实验的结果验证了改进D*算法的可行性以及局部路径规划的必要性。最后,介绍了一种基于人机协同的路径规划系统架构,开发了一款GUI软件以实现人机交互,通过地面移动小车实验验证了人机协同的路径规划系统的可行性与有效性。
其他文献
音乐自动标注的目的是识别一段音乐音频所涉及的各种社会标签,包括但不仅限于音乐的乐器、年代、情感和流派。目前,基于卷积神经网络的音乐自动标注算法已经成为解决该任务的主流方法之一。本文调研和分析现有基于卷积神经网络的音乐自动标注算法,发现卷积神经网络中的卷积和池化操作造成了的空间特征的损失、缺少基于数据增强的音乐自动标注算法的研究、缺少基于音乐自动标注算法的工程应用的问题。基于此,本文研究基于胶囊网络
近年来,随着人工智能技术的发展,深度学习作为一种重要技术应用于自然语言处理和机器视觉等前沿领域。同时,动态演化网络广泛存在于现实生活中,包括社交网络、科研引用网络以及交通网络,动态网络的研究也成为了学术界的研究热点之一。目前学术界大量地将深度学习技术应用于网络表示学习的研究,通过对网络中的节点进行表示学习取得节点向量,从而方便对非结构化的网络图数据进行机器学习任务,包括节点分类、链接预测和可视化等
集群系统协同控制是通过成员之间的信息交互,完成更加复杂的任务,已经成为当下军事和民用领域提升工作效率的重要手段。一致性问题作为集群控制的基础问题,是当下的热门研究话题。本文以系统模型不确定、存在外部扰动和具有通信约束等因素对集群系统行为的影响为切入点,研究集群鲁棒一致性控制方法,使系统稳定实现一致性跟踪和二部一致性等行为。主要研究工作及创新性成果如下:1.研究具有模型不确定性和未知扰动的集群系统鲁
与单个飞行器相比,飞行器集群具有低成本、高效率、抗损耗等特点。因此飞行器集群在战场上得到了广泛的应用,是未来战场环境发展的重要趋势,同时也给国防防御技术带来了巨大的挑战。采用低成本集群对抗集群的作战方式,能够有效的消除飞行器集群带来的威胁。论文面向飞行器拦截对抗空中集群目标的场景,在实际作战中飞行器为拦截导弹,拦截对象为集群无人机,研究多飞行器智能协同制导与控制问题,实现多飞行器自主协同作战,对未
伴随着深度学习的发展,尤其是卷积神经网络(Convolutional Neural Networks,CNN)的更新迭代,图像分类及目标检测方法获得了显著进步,但即使是最先进的模型也仅具有非常有限的旋转不变性。当输入数据在空间经过旋转后,由于原始模型的滤波器是在直立样本中打磨学习,因此模型将旋转前后的图像特征视为完全不相同的两类,导致最终的识别效果大幅度下降。已知的解决方法有训练数据的增强,以及通
深度学习发展至今,学术界逐渐将心电信号的研究目光转移至传统方法与深度学习相结合的研究上,原因在于心电信号的广泛数字化,促进了深度学习在心电信号上的应用。传统的心电信号标准化解释包含信号预处理、手工特征提取、以及心电信号分类三个部分,每个部分既相互独立又相互依赖,例如手工设计特征的泛化性与心电信号分类模型的性能息息相关。基于深度学习的心电信号分类能够做到端到端的训练,不依赖于信号预处理和手工特征选取
近年来,步态识别等生物特征领域的研究越来越被人们所关注。步态识别不同于人脸、虹膜识别等静态识别,这种方法可以通过在远处拍摄视频来进行识别,而不需要使用过多局部细节,克服了当前生物识别的一些局限性。步态识别技术优势明显,可以克服当前人脸识别等方法的缺点,能够在复杂场景下获得较为广泛的应用。提高步态身份识别的准确率有助于提升效率、减少工作量,尤其在车站行人身份检测、身份验证等方面的效率将会有非常大的进
随着人工智能与智能制造逐渐兴起,为适应复杂多变的外部环境,智能化技术成为当前的研究热点。为提高控制系统的智能化程度,本文搭建了视觉感知的智能欠驱动机械臂平台,设计了基于机械臂末端视觉的目标检测、跟踪算法,并对其性能进行了验证。本文的主要工作有:一、设计了用于图像特征提取的视觉感知模块。本模块经图像预处理、目标检测、特征点提取及更新的流程后,可实现对目标特征点的有效提取。基于对本文环境下相机成像特点
近年来,随着定位导航技术的逐渐成熟,使移动机器人在未知环境中的自主导航成为可能。但是即使是当前最先进的同步定位与建图(SLAM)技术,也会因为传感器中的噪声而给地图中障碍物的定位带来不确定性。典型的路径规划算法都关注如何降低这种不确定性,而本文将从另一个角度来解决这种信息的不确定性。针对环境信息的不确定性问题,提出了一种基于Voronoi图与不确定性势场算法的路径规划方法,使移动机器人在信息不确定
推荐系统作为一种个性化的信息过滤工具,随着大数据时代的到来得到了越来越广泛的应用。与此同时,推荐系统也面临着发展和挑战,比如数据稀疏性、缺乏可解释性等问题。现有的推荐模型难以处理稀疏的结构化数据,忽略了用户行为序列蕴藏的偏好信息,并且无法为推荐结果提供合理的解释。为解决上述问题,本文围绕点击率预测任务,深入研究基于深度学习的推荐算法,提出了两种可解释个性化推荐模型,并设计实现了一个金融产品推荐系统