【摘 要】
:
近年来,反应扩散方程的自由边界问题被广泛地应用于生态学和传染病学的研究中,并且获得了大量学者的持续关注.在上述基础上,本文考虑一类多稳定型反应扩散方程的自由边界问题,其中方程为ut=uxx+f(u),x∈(0,h(t)),自由边界h(t)代表物种的扩张前沿且满足Stefan条件h’(t)=-μux(t,h(t))-α,f是一类多稳定型非线性项,本文主要关心代表环境阻力的参数α对该问题解的渐近行为的
论文部分内容阅读
近年来,反应扩散方程的自由边界问题被广泛地应用于生态学和传染病学的研究中,并且获得了大量学者的持续关注.在上述基础上,本文考虑一类多稳定型反应扩散方程的自由边界问题,其中方程为ut=uxx+f(u),x∈(0,h(t)),自由边界h(t)代表物种的扩张前沿且满足Stefan条件h’(t)=-μux(t,h(t))-α,f是一类多稳定型非线性项,本文主要关心代表环境阻力的参数α对该问题解的渐近行为的影响.本文首先利用压缩映像原理,抛物方程的Lp理论以及Schauder估计等证明了有界解的存在唯一性以及正则性,其次利用零点性质讨论了有界解渐近行为的五分性结果(大传播-小传播-消亡-两种过渡),特别地还给出了传播或消亡发生的一些充分条件,最后利用比较原理给出了传播发生时解的渐近传播速度的精确估计.
其他文献
上世纪60年代以来,学者开始研究生物寿命的拟合分布,这些寿命分布通常用于拟合生物寿命,产品寿命等场景,用于预测描述产品的寿命特征。随着深入的研究,复合分布在产品寿命的拟合广泛性和精确性有着较好的应用,构造复合分布以及研究复合分布在寿命拟合的效果成了统计学学者青睐的研究内容。本文研究的广义EP分布为三参数复合寿命分布。首先,复合威布尔分布和零截断泊松分布,推导得到广义EP分布,并对该分布的概率密度函
近年来,由于在生物医学、图像处理、自动控制、模式识别和保密通信等领域的广泛应用,细胞神经网络已成为国内外众多专家学者研究的一个重要内容.细胞神经网络(Cellular Neural Network,CNN)是由 Chua 和 Yang[J.Eur.Math.Soc 2005]于1988年提出的一类结构规律、维数可无限拓展的非线性模拟动力系统,CNN具有丰富的动力学性态,如平衡点、周期解、行波解、混
与经典随机微分方程相比,带有自交互项的随机微分方程的理论分析具有更高的难度.由于该随机系统很难求出解析解的显式表达式,数值计算成为研究此类随机系统的重要工具.然而,由于自交互扩散随机微分方程的系数中含有积分项,其数值格式的构造需要提出不同于经典随机微分方程数值方法的新途径.本文主要研究自交互扩散系统的数值格式构造的基本思路,并分析数值格式收敛性.本文采用由局部误差推导整体误差的思想,在均方收敛的意
刚性常微分方程在航空、航天、化学动力学等领域有着广泛的应用.块方法具有精度高、稳定性好、可并行等优点,是求解刚性常微分方程的一种重要的数值方法.本论文主要研究求解刚性常微分方程的局部线性化显式块方法,并分析其收敛性及数值稳定性.第一章,简述时间精确高稳定显式(TASE)算子、局部线性化方法和块θ-方法的基本理论.第二章,使用TASE算子对显式块方法进行预处理,给出数值格式A-稳定的必要条件.证明了
本文主要是考虑一类随机捕食者—食饵模型的动力学行为,全文共分为三章.第一章首先介绍了捕食者—食饵模型的生物学背景以及研究现状,其次给出了随机分析以及随机微分方程的相关预备知识.第二章研究了一类具有一般功能反应函数的随机捕食者—食饵模型的动力学行为.具体来说,我们首先提出了研究的模型,并且引入适当的条件.其次,利用随机微分方程的基本理论、停时技巧以及It(?)公式,我们得到了随机系统全局正解的存在性
空间点过程是指在空间域Rd上生成的一组随机点集,点过程的一次实现称为点模式.Poisson点过程是点模式数据建模中的一类常用模型,其统计规律通过强度函数进行刻画.实际应用中的大多数点模式数据其强度函数随位置变化而不同,呈现异质性,很难用既定的参数化模型进行刻画.因此,对异质Poisson点过程的强度函数进行非参数统计推断是一个重要且具有实际意义的问题.通过将异质Poisson点过程的对数强度采用薄
本文研究了一类高维有界光滑区域上的Lotka-Volterra扩散-对流型竞争系统.借助分支理论、微分方程基本理论和非线性分析技巧,给出了系统正稳态解的全局分支图.此外,也证明了系统的多解现象.全文一共分为三章.第一章是引言,主要介绍相关研究背景、国内外研究现状,以及我们的主要研究内容和结果.第二章是预备知识,主要介绍了全局分支定理.第三章是主要结果的证明:第一小节探讨了系统正稳态解的边界极限行为
文献[7]研究了在微小扰动下的单摆系统的极限环分支,并对形式为的系统提出一个猜想:当n>0时,该系统在圆柱面[0,2T]×R的周期环域{(x,y)|y2/2+1-cos(x)=h,h∈(0,2)}上的首阶Melnikov函数至多有n+2m-2个零点(考虑重数),而当n=0时,至多有m-1个零点(考虑重数),其中m=[s2-2r+1/2],r=[s1/2],Qn,s(x)是n次三角多项式.在本论文中
在金融和生物医学等领域中,当研究只关心随机变量的数值大小而不考虑其代数符号时,我们可以考虑该随机变量的折叠分布(即该随机变量的绝对值的分布).常用的折叠分布有折叠正态分布、折叠t分布、折叠柯西分布、折叠logistic分布等,这些分布都来自于折叠椭球分布族.但是目前还没有文献系统地讨论这个分布族,为了更好地了解该分布族,从而为后续的统计推断奠定概率基础,本文在此针对一维折叠椭球分布族讨论了其随机比
在反应扩散方程的理论研究中,解的渐近性态是一个重要话题.本文研究具有单调初值的反应扩散方程,包括双稳定型、燃烧型、多稳定型方程等.其解的渐近性态可用于刻画物种入侵新环境后发生的各种可能现象.首先,我们利用初值的单调性,通过相平面分析确定了ω-极限集的元素;其次,构造合适的上下解证明了解在局部一致拓扑下的收敛性;最后,我们对部分解的渐近传播速度进行了估计.