【摘 要】
:
金属基钠离子负极材料由于其取材广泛、理论比容量和工作电压较高等优点而成为人们研究的热点。但是,金属基材料在充放电过程中会遭遇到巨大的体积膨胀从而使电极材料发生粉碎,最终加快电极材料的比容衰退,这样就难以实现长循环稳定性;另一方面,金属基材料的导电性较差,这会很大程度上限制其电化学性能的发挥。由于碳基材料具有高的导电性、较强的稳定性和易于与金属材料整合等优点,所以通过制备金属和碳的复合材料并在协同作
论文部分内容阅读
金属基钠离子负极材料由于其取材广泛、理论比容量和工作电压较高等优点而成为人们研究的热点。但是,金属基材料在充放电过程中会遭遇到巨大的体积膨胀从而使电极材料发生粉碎,最终加快电极材料的比容衰退,这样就难以实现长循环稳定性;另一方面,金属基材料的导电性较差,这会很大程度上限制其电化学性能的发挥。由于碳基材料具有高的导电性、较强的稳定性和易于与金属材料整合等优点,所以通过制备金属和碳的复合材料并在协同作用下充分发挥两种材料的优点,最终得到具有长循环稳定性和高倍率性能的钠离子电极材料。综上,合理的构筑碳/金属复合材料展示出很好的工业化应用前景。本文选用具有较高理论容量的SnP2O5、Sn、TiO2、Fe1-xC为金属基材料,同时利用不同的物理化学方法构建具有特殊形貌的碳/金属复合材料并研究其对电化学的影响。详细的研究内容和所得结论如下:(1)在石墨烯表面水热沉积一层二氧化锡纳米粒子,再用含磷高分子聚合物进行包覆,通过高温煅烧,合成了碳包覆二氧化锡为核、焦磷酸亚锡为壳的复合材料(am-Sn OxPy@N-GN)。二氧化锡能够提供较高的比容量,焦磷酸亚锡在提供高比容量的同时还能够缓冲二氧化锡的体积膨胀,石墨烯基碳可以提高锡基材料的导电性。经测试分析得,am-Sn OxPy@N-GN具有良好的循环稳定性(在电流密度为1 A g-1时循环3000次比容量仍可维持在201 m Ah g-1)。(2)以金属有机框架ZIF-8为模板,在室温下,以十六胺为束缚剂在ZIF-8表面快速的沉积一层无定形二氧化钛。然后通过高温锌的蒸发制备晶格间距扩大的二氧化钛碳中空复合材料(h-Ti O2@C-800)。晶格间距的增大不仅可以有利于钠离子的快速脱嵌、抑制不可逆反应,同时也能够减小晶格参数、缓解体积膨胀。作为结果,h-Ti O2@C-800展示出高的倍率性能(在8 A g-1的电流密度下的比容量为154 m Ah g–1)和循环稳定性(在5 A g-1的电流密度下循环6000次比容可维持在150 m Ah g–1)。(3)通过热解聚丙烯腈和六水合硝酸铁的混合物,然后盐酸刻蚀,制备多孔氮掺杂的碳纳米片封装Fe1-xC纳米结构(Fe1-xC@C),Fe1-xC@C复合材料展现的优异的电化学性能(500 m A g-1下循环800次比容量为125 m Ah g-1)。
其他文献
精馏作为化学工业中使用最为广泛的分离技术,其能耗约占化学工业总能耗的40%以上,且存在设备投资大、热力学效率低等问题。因此开发新型精馏技术,降低精馏过程能耗,提高其分离效率具有重要的经济价值和社会意义。常规精馏分离三元混合物需要两台精馏塔,存在能耗高、设备数量多、分离成本高等缺点。半连续精馏作为一种过程强化技术,可以使用较少的设备实现多组分的分离。然而,目前针对半连续精馏的设计研究较少,尚没有形成
焊接结构是工程建设中不可或缺的连接方式,而焊接残余应力的存在影响了构件的性能,使设备的安全出现隐患。超声冲击处理以其高效、简便的特点被广泛应用。目前,超声冲击处理的研究多通过试验手段,其模拟方法由于冲击过程和输入参数的简化在准确性上有待提高。针对该问题,本课题提出了一种准确描述超声冲击过程的数值模拟改进方法,将超声冲击过程分解为冲击头运动阶段和冲击头作用阶段,与焊接过程进行耦合计算,并加以试验对比
润滑油在使用一段时间之后,由于添加剂的降解,空气的氧化作用及外来水分的混入,其理化性质会发生改变,从而失去润滑作用成为废润滑油。由于废油中含有大量的金属添加剂及氧化胶质等杂质,直接排放或燃烧会对环境造成很大的危害,且这些杂质在废润滑油固定床加氢再生成基础油时会造成管路结焦及催化剂中毒失活等问题。因此,本文以一种废润滑油为原料,采取了脱金属-萃取的低温预处理工艺对废油进行处理以除去其中的大部分金属添
如何在常温常压的条件下活化甲烷的C-H键,将甲烷转换成更易被存储利用的有机衍生物,是现今社会催化领域最具有挑战性的前沿课题。为应对甲烷活化的挑战,光催化领域提出了一种新型绿色的反应策略,即利用羟基自由基(·OH)实现C-H键的断裂。通过构筑FeNx中心,实现甲烷C-H键在该中心上的断裂。以亚铁盐为金属源,二甲基咪唑为配体,制备前驱体,再利用高氮含量的三聚氰胺为分散剂,不同比例的二者混合物进行焙烧以
油田在采油过程中为了降低开采成本,稳定油田产量,常常采用注水开发。油藏储层中含有大量粘土矿物,粘土矿物在遇到注入水后体积膨胀进而分散甚至随着注入水运移,堵塞储层孔隙、岩石孔喉,导致注水压力增大,减小油田产量。为解决这一问题,常常加入粘土稳定剂稳定油藏储层,提高油田产量。随着石油开采程度的进一步加深,地层温度高,渗透率低,这对粘土稳定剂的耐温性能和分子设计提出了更高的要求。本论文通过文献调研和分子结
森林为人类提供多种生态系统服务,但随着森林覆盖的动态变化,森林生态系统服务的提供因时空而异。然而仍然缺乏能够预测森林覆盖空间分布的工具,同样需要了解森林覆盖变化的影响因素,以保护或加强其长期提供的生态系统服务。因此迫切需要利用森林预测模型以分析森林覆盖变化中的关键驱动因素。针对澳大利亚科学院水土所(CSIRO)提供的澳大利亚塔斯马尼亚洲森林数据集,先后基于支持向量回归(SVR)、人工神经网络(AN
通过野外考察、实地走访、采集鉴定及资料整理,对广东国营洲瑞林场的药用植物资源进行调查,发现药用植物共有105科300种;物种最多的为菊科,占比8.0%,具有优势科特征,而主体为小型科,以期更好地保护利用药用资源,开发洲瑞林场药用产业,实现药用植物的可持续利用。
沥青质分子容易聚集、易于沉析的性质给原油生产、运输和重质油加工过程带来许多问题。目前人们对沥青质分子结构、聚集性质的研究取得了很大进展,但是对如何减缓或阻止沥青质分子聚集的研究还远远不够。本文选取具有代表性的国内某石化公司减压渣油沥青质(AS-QT)和加拿大脱油油砂沥青沥青质(AS-CD),对沥青质进行化学修饰,并结合仪器分析方法研究化学修饰对沥青质超分子聚集的影响,揭示沥青质分子中某些基团对其聚
随着可持续绿色经济的不断发展,过氧化氢的市场需求量逐年增加。蒽醌法作为生产过氧化氢的关键技术,主要包括流化床工艺及固定床工艺。与固定床蒽醌加氢工艺相比,流化床工艺氢化效率高,相关副反应及氢化降解物少,但是催化剂与反应液分离困难,造成设备能耗高,催化剂使用寿命缩短。因此,针对流化床蒽醌加氢催化剂利用率低、分离成本高等问题,本论文以设计具有蒽醌加氢活性和磁响应性的催化剂为目标,开展了磁性Pd基催化剂的
目前,石油开采已经进入到了以化学驱替剂为主要手段的三次采油阶段,这一阶段的油藏特点是含水率高、含油量少,如何进一步提高采收率是目前石油开发中亟待解决的问题。三元复合驱是一种可以有效提高石油采收率的三次采油手段。然而三元复合驱的开采周期长、投入成本高,需要对三元复合驱技术进行科学的研究,以制定合理的开发方案。本文提出基于边界值约束的小波神经网络,然后建立基于数据驱动的三元复合驱辨识模型,应用近似动态