论文部分内容阅读
[摘 要]高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱进行分离测定的色谱方法。
[关键词]高效液相色谱法、色谱柱、检测器、矫正
中图分类号:O657.7+2 文献标识码:A 文章编号:1009-914X(2015)11-0365-01
高效液相色谱法具有分离效能高、分析速度快、重现性好、准确度和灵敏度高等优点,其应用范围之广,是其它分析仪器所不能比拟的。随着仪器的普及和蒸发光散射检测器、质谱检测器的商品化,本法已成为生药含量测定的首选和主流方法。
1.对仪器的一般要求
(1) 色谱柱 最常用的色谱柱填充剂为化学键合硅胶。反相色谱系统使用非极性填充剂,以十八烷基硅烷键合硅胶最为常用,辛基硅烷键合硅胶和其他类型的硅烷键合硅胶也有使用。正相色谱系统使用极性填充剂,常用的填充剂有硅胶等。离子交换填充剂用于离子交换色谱;凝胶或高分子多孔微球等填充剂用于分子排阻色谱等;手性键合填充剂用于对映异构体的拆分分析。
填充剂的性能以及色谱柱的填充,直接影响待测物的保留行为和分离效果。孔径在15nm以下的填充剂适合于分析分子量小于2000的化合物,分子量大于2000的化合物则应选择孔径在30nm以上的填充剂。
以硅胶为载体的一般键合固定相填充剂适用pH2~8的流动相。当pH大于8时,载体硅胶会被溶解;当pH小于2时,与硅胶相连的化学键合相易水解脱落。当色谱系统中需使用 pH大于8的流动相时,应选用耐碱的填充剂,如采用高纯硅胶为载体并具有高表面覆盖度的键合硅胶、包覆聚合物填充剂、有机-无机杂化填充剂或非硅胶填充剂等;当需使用pH小于2的流动相时,应选用耐酸的填充剂,如具有大体积侧链能产生空間位阻保护作用的二异丙基或二异丁基取代十八烷基硅烷键合硅胶、有机-无机杂化填充剂等。这些特殊的色谱柱已有商品供应。
(2) 检测器最常用的检测器为紫外检测器,其他常见的检测器有二极管阵列检测器、荧光检测器、示差折光检测器、蒸发光散射检测器、电化学检测器和质谱检测器等。
紫外、二极管阵列、荧光、电化学检测器为选择性检测器,其响应值不仅与待测溶液的浓度有关,还与化合物的结构有关。示差折光检测器和蒸发光散射检测器为通用型检测器,对所有的化合物均有响应;蒸发光散射检测器对结构类似的化合物,其响应值几乎仅与待测物的质量有关。二极管阵列检测器可以同时记录待测物在规定波长范围内的吸收光谱,故可用于待测物的光谱测定和色谱峰的纯度检查。
紫外、荧光、电化学和示差折光检测器的响应值与待测溶液的浓度在一定范围内呈线性关系,但蒸发光散射检测器响应值与待测溶液的浓度通常并不呈线性关系,必要时需对响应值进行数学转换后进行计算。
不同的检测器,对流动相的要求不同。如采用紫外检测器,所用流动相应至少符合紫外 - 可见分光光度法对溶剂的要求;采用低波长检测时,还应考虑有机相中有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测器和质谱检测器通常不允许使用含不挥发盐组分的流动相。
(3) 流动相 可采用固定比例(等度洗脱)或按规定程序改变比例(梯度洗脱)的溶剂组成作为流动相系统。由于C-18链在水相环境中不易保持伸展状态,故对于十八烷基硅烷键合硅胶为固定相的反相色谱系统,流动相中有机溶剂的比例通常应不低于5%,否则C18链的随机卷曲将导致组分保留值变化,造成色谱系统不稳定。
2.系统适用性试验
色谱系统的适用性试验通常包括理论板数、分离度、重复性和拖尾因子等四个指标。其中,分离度和重复性是系统适用性试验中更具实用意义的参数。
通常用规定的对照品对色谱系统进行系统适用性试验。
(1) 色谱柱的理论板数(n)在规定的色谱条件下,注入供试品溶液或内标物质溶液,记录色谱图,量出供试品主成分峰或内标物质峰的保留时间tR(以分钟或长度计,下同,但应取相同单位) 和半高峰宽(Wh/2),按n=5.54(tR/W h/2)2计算色谱柱的理论板数。
(2) 分离度 (R) 无论是定性鉴别还是定量分析,均要求待测峰与其他峰、内标峰或特定的杂质对照峰之间有较好的分离度。
(3) 重复性取对照品溶液,连续进样5次,除另有规定外,其峰面积测量值的相对标准偏差应不大于2.0%。也可配制相当于80%、100%和120%的对照品溶液,加入规定量的内标溶液,配成3种不同浓度的溶液,分别至少进样2次,计算平均校正因子。其相对标准偏差应不大于2.0%。
(4) 拖尾因子(T)为保证分离效果和测量精度,应检查待测峰的拖尾因子是否符合相关规定。
3.测定法
(1) 内标法加校正因子测定供试品中某个成分含量精密称(量)取对照品和内标物质,分别配成溶液,精密量取各溶液,配成校正因子测定用的对照品溶液。取一定量注入仪器,记录色谱图。测量对照品和内标物质的峰面积或峰高,按下式计算校正因子:
校正因子(f)=式(3-8)
式中As为内标物质的峰面积或峰高;AR为对照品的峰面积或峰高;CS为内标物质溶液的浓度;CR为对照品溶液的浓度。
再取含有内标物质的供试品溶液,注入仪器,记录色谱图,测量供试品中待测成分和内标物质的峰面积或峰高,按下式计算含量:
含量(Cx)=f×式(3-9)
式中Ax为供试品峰面积或峰高;Cx为供试品溶液的的浓度;A′s为内标物质的峰面积或峰高;C′s为内标物质的浓度。f为校正因子。
当配制校正因子测定用的对照品溶液和含有内标物质的供试品溶液,使用等量同一浓度的内标物质溶液时,Cs=C′s,则配制内标物质溶液不必精密称 (量)取。
(2)外标法测定供试品中某个成分含量 精密称(量)取对照品和供试品,配制成溶液,分别精密取一定量,注入仪器,记录色谱图。
由于微量注射器不易精确控制进样量,当采用外标法测定供试品中某成分含量时,以定量环或自动进样器进样为好。
(3)面积归一化法 是测量色谱图上某色谱峰和除溶剂峰以外的总色谱峰面积,计算某色谱峰占总面积的百分率。该法通常用于对照品纯度的检查。
参考文献
[1] 《高效液相色谱》吴宁生,顾光华编,中国科学技术大学出版社,1989.
[2] 《高效液相色谱法》恩格哈特著;杨文澜,马延林译,机械工业出版社,1982.
[关键词]高效液相色谱法、色谱柱、检测器、矫正
中图分类号:O657.7+2 文献标识码:A 文章编号:1009-914X(2015)11-0365-01
高效液相色谱法具有分离效能高、分析速度快、重现性好、准确度和灵敏度高等优点,其应用范围之广,是其它分析仪器所不能比拟的。随着仪器的普及和蒸发光散射检测器、质谱检测器的商品化,本法已成为生药含量测定的首选和主流方法。
1.对仪器的一般要求
(1) 色谱柱 最常用的色谱柱填充剂为化学键合硅胶。反相色谱系统使用非极性填充剂,以十八烷基硅烷键合硅胶最为常用,辛基硅烷键合硅胶和其他类型的硅烷键合硅胶也有使用。正相色谱系统使用极性填充剂,常用的填充剂有硅胶等。离子交换填充剂用于离子交换色谱;凝胶或高分子多孔微球等填充剂用于分子排阻色谱等;手性键合填充剂用于对映异构体的拆分分析。
填充剂的性能以及色谱柱的填充,直接影响待测物的保留行为和分离效果。孔径在15nm以下的填充剂适合于分析分子量小于2000的化合物,分子量大于2000的化合物则应选择孔径在30nm以上的填充剂。
以硅胶为载体的一般键合固定相填充剂适用pH2~8的流动相。当pH大于8时,载体硅胶会被溶解;当pH小于2时,与硅胶相连的化学键合相易水解脱落。当色谱系统中需使用 pH大于8的流动相时,应选用耐碱的填充剂,如采用高纯硅胶为载体并具有高表面覆盖度的键合硅胶、包覆聚合物填充剂、有机-无机杂化填充剂或非硅胶填充剂等;当需使用pH小于2的流动相时,应选用耐酸的填充剂,如具有大体积侧链能产生空間位阻保护作用的二异丙基或二异丁基取代十八烷基硅烷键合硅胶、有机-无机杂化填充剂等。这些特殊的色谱柱已有商品供应。
(2) 检测器最常用的检测器为紫外检测器,其他常见的检测器有二极管阵列检测器、荧光检测器、示差折光检测器、蒸发光散射检测器、电化学检测器和质谱检测器等。
紫外、二极管阵列、荧光、电化学检测器为选择性检测器,其响应值不仅与待测溶液的浓度有关,还与化合物的结构有关。示差折光检测器和蒸发光散射检测器为通用型检测器,对所有的化合物均有响应;蒸发光散射检测器对结构类似的化合物,其响应值几乎仅与待测物的质量有关。二极管阵列检测器可以同时记录待测物在规定波长范围内的吸收光谱,故可用于待测物的光谱测定和色谱峰的纯度检查。
紫外、荧光、电化学和示差折光检测器的响应值与待测溶液的浓度在一定范围内呈线性关系,但蒸发光散射检测器响应值与待测溶液的浓度通常并不呈线性关系,必要时需对响应值进行数学转换后进行计算。
不同的检测器,对流动相的要求不同。如采用紫外检测器,所用流动相应至少符合紫外 - 可见分光光度法对溶剂的要求;采用低波长检测时,还应考虑有机相中有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测器和质谱检测器通常不允许使用含不挥发盐组分的流动相。
(3) 流动相 可采用固定比例(等度洗脱)或按规定程序改变比例(梯度洗脱)的溶剂组成作为流动相系统。由于C-18链在水相环境中不易保持伸展状态,故对于十八烷基硅烷键合硅胶为固定相的反相色谱系统,流动相中有机溶剂的比例通常应不低于5%,否则C18链的随机卷曲将导致组分保留值变化,造成色谱系统不稳定。
2.系统适用性试验
色谱系统的适用性试验通常包括理论板数、分离度、重复性和拖尾因子等四个指标。其中,分离度和重复性是系统适用性试验中更具实用意义的参数。
通常用规定的对照品对色谱系统进行系统适用性试验。
(1) 色谱柱的理论板数(n)在规定的色谱条件下,注入供试品溶液或内标物质溶液,记录色谱图,量出供试品主成分峰或内标物质峰的保留时间tR(以分钟或长度计,下同,但应取相同单位) 和半高峰宽(Wh/2),按n=5.54(tR/W h/2)2计算色谱柱的理论板数。
(2) 分离度 (R) 无论是定性鉴别还是定量分析,均要求待测峰与其他峰、内标峰或特定的杂质对照峰之间有较好的分离度。
(3) 重复性取对照品溶液,连续进样5次,除另有规定外,其峰面积测量值的相对标准偏差应不大于2.0%。也可配制相当于80%、100%和120%的对照品溶液,加入规定量的内标溶液,配成3种不同浓度的溶液,分别至少进样2次,计算平均校正因子。其相对标准偏差应不大于2.0%。
(4) 拖尾因子(T)为保证分离效果和测量精度,应检查待测峰的拖尾因子是否符合相关规定。
3.测定法
(1) 内标法加校正因子测定供试品中某个成分含量精密称(量)取对照品和内标物质,分别配成溶液,精密量取各溶液,配成校正因子测定用的对照品溶液。取一定量注入仪器,记录色谱图。测量对照品和内标物质的峰面积或峰高,按下式计算校正因子:
校正因子(f)=式(3-8)
式中As为内标物质的峰面积或峰高;AR为对照品的峰面积或峰高;CS为内标物质溶液的浓度;CR为对照品溶液的浓度。
再取含有内标物质的供试品溶液,注入仪器,记录色谱图,测量供试品中待测成分和内标物质的峰面积或峰高,按下式计算含量:
含量(Cx)=f×式(3-9)
式中Ax为供试品峰面积或峰高;Cx为供试品溶液的的浓度;A′s为内标物质的峰面积或峰高;C′s为内标物质的浓度。f为校正因子。
当配制校正因子测定用的对照品溶液和含有内标物质的供试品溶液,使用等量同一浓度的内标物质溶液时,Cs=C′s,则配制内标物质溶液不必精密称 (量)取。
(2)外标法测定供试品中某个成分含量 精密称(量)取对照品和供试品,配制成溶液,分别精密取一定量,注入仪器,记录色谱图。
由于微量注射器不易精确控制进样量,当采用外标法测定供试品中某成分含量时,以定量环或自动进样器进样为好。
(3)面积归一化法 是测量色谱图上某色谱峰和除溶剂峰以外的总色谱峰面积,计算某色谱峰占总面积的百分率。该法通常用于对照品纯度的检查。
参考文献
[1] 《高效液相色谱》吴宁生,顾光华编,中国科学技术大学出版社,1989.
[2] 《高效液相色谱法》恩格哈特著;杨文澜,马延林译,机械工业出版社,1982.