论文部分内容阅读
著名数学家波利亚说过,所谓解决问题就是在没有现成的解决方法时找到一条解决的途径,就是从困难中找到出路,就是寻求一条绕过障碍的路,找到可以解决问题的答案。新课程标准将解决问题作为一个重要目标:就是发展学生的创新精神和解决问题的实践能力。不仅使学生学到知识,更重要的是使他们在错综复杂的情况中,利用所学的知识对具体问题作有条理的分析和预测,不再是固定的模型,而是灵活富有挑战的,进行创造性的思考去探索和解决。既有让小学生用原有的知识、技能和方法迁移到课程情景中解决的新问题;也有从现实生活中提取的,通过数学模型,求解,假设,推理的实际问题。面对新问题,如何寻找解决的方法和途径呢?
1 教师如何在教学中培养学生的解题策略
1.1 走进情境,获取信息。新教材借助学生身边丰富的资源,创设了生动活泼的生活情境,提供了较真实的亟待解决的实际问题,选材范围扩大了,提供的信息数据范围扩大了。教学时,应充分利用这些信息资源,选择恰当的方式展示这些问题情境,引导学生从情境中观察、发现、收集数学信息,并对所有信息进行筛选、提取,同时培养学生认真观察、从数学角度思考问题的习惯,提高收集信息、处理信息的能力。
1.2 处理信息,启动问题。引导学生对发现的信息进行分析,从中筛选提炼有用的信息。这一环节,教师不应过多地引导,而应让学生在思维的互相碰撞中完成。如引导学生注意倾听他人发现的信息,并随时进行评价。通过大家的交流和评价,学生自己就能筛选出有用的信息。然后再引导学生根据信息提出有价值的数学问题。由于新的数学问题学生第一次接触,有的学生可能提出原来学习过的数学问题,面对这种情况,教师不要轻易给予否定,可以让学生马上解决,对提出的正确问题,以板书的形式出现,以突出重点,最后选择例题进行研究。
1.3 自主探究、合作交流,引导学生善于解决问题。提出问题是手段,而不是目的。最重要的是让学生能创造性地解决问题。因此,教师在教学中就要给学生提供自主探索的机会、引导学生去动手实践、自主探究和合作交流,在观察、实验、猜测、验证、交流等数学活动中解决问题、并初步发展学生解决问题的策略。
1.4 联系实际、应用拓展,提高学生的问题解决意识。数学学习的最终目的是让学生运用所学的知识去解决生活中的问题,让学生在面对实际问题时,能主动尝试从数学的角度出发,运用所学的知识寻找解决问题的策略。提高学生问题解决的意识,最有效的方法是让学生有机会亲身实践。
2 解决问题有哪些策略
学生在数学学习中常为遇到一些棘手的难题,不知道从何处入手分析、解决数学问题而苦恼,普遍比较缺乏解决问题的方法与策略。教师若能在平时的教学或辅导中教给他们若干解决数学问题的策略,对学生将会起到启迪思维,激发学习数学的兴趣,掌握解决数学问题技巧的作用。
2.1 对比分析策略。大多学生在做一些计算题时,不善于观察题中运算符号和数字的特征,就急于动笔计算;而对于一些能采用简便方法计算的题目,学生又不知怎样简算。此时,教师就可以采用对比分析策略。写出对比式,引导学生观察、分析异同,让学生自己发现简便算法,并要求他们以后按照一看(看题中运算符号和数字的特征)、二想(想采用什么方法计算)、三算(动笔计算)、四验(每算完一步及时检验)的步骤进行运算。
2.2 实际操作——知识迁移。实际操作就是通过学生的摆一摆,剪一剪,量一量,拼一拼等,对事物进行调整理顺,直到发现正确的答案。所谓知识迁移:就是把看起来比较复杂的,没有现成计算方法的,通过化简,拼凑,变形的方法将新的知识转移到学过的知识上去,从旧的知识中得出新的知识来。如“平行四边形面积公式的推导”,就需要学生动手制作,画一画,剪一剪,拼一拼,如拼成一个和它面积相等的长方形或者是正方形。使学生从中感悟到将要学的知识化成旧的知识,让学生通过各种操作、推理获得新知识,感悟出解决问题的策略。
2.3 设数计算策略。有些数学问题比较抽象,若按常规方法去分析、解答,则很难求解。如能突破常规,先将题中的某些条件设为具体数据(所设数据要便于计算)或简单实例,便可从中发现解题规律,使问题化难为易。
2.4 数形结合策略:“数形结合”是数学中比较重要的一种思想方法和解题策略,其实质是将抽象的数学语言与直观的图像结合起来,在数的问题与形的问题之间互相转换,使数的问题图形化,形的问题代数化,从而使复杂题简单化,抽象问题具体化。
要发展学生解决问题的能力,关键是加强对学生思维策略的指导,要教学生解题策略和思想方法,如对应思想、化归思想、转换思想、统计思想等,同时,教给学生一些数学方法,如观察法、实验操作法、归纳和演绎、画图等。加强对学生思维策略的指导,让学生学会根据提出的问题进行探索,用数学的思维方式去分析问题、解决问题,可以更好地发展学生的直觉思维、辩证思维和形式逻辑思维等,更好地优化思维结构,培养学生的创新意识和解决问题的能力。
1 教师如何在教学中培养学生的解题策略
1.1 走进情境,获取信息。新教材借助学生身边丰富的资源,创设了生动活泼的生活情境,提供了较真实的亟待解决的实际问题,选材范围扩大了,提供的信息数据范围扩大了。教学时,应充分利用这些信息资源,选择恰当的方式展示这些问题情境,引导学生从情境中观察、发现、收集数学信息,并对所有信息进行筛选、提取,同时培养学生认真观察、从数学角度思考问题的习惯,提高收集信息、处理信息的能力。
1.2 处理信息,启动问题。引导学生对发现的信息进行分析,从中筛选提炼有用的信息。这一环节,教师不应过多地引导,而应让学生在思维的互相碰撞中完成。如引导学生注意倾听他人发现的信息,并随时进行评价。通过大家的交流和评价,学生自己就能筛选出有用的信息。然后再引导学生根据信息提出有价值的数学问题。由于新的数学问题学生第一次接触,有的学生可能提出原来学习过的数学问题,面对这种情况,教师不要轻易给予否定,可以让学生马上解决,对提出的正确问题,以板书的形式出现,以突出重点,最后选择例题进行研究。
1.3 自主探究、合作交流,引导学生善于解决问题。提出问题是手段,而不是目的。最重要的是让学生能创造性地解决问题。因此,教师在教学中就要给学生提供自主探索的机会、引导学生去动手实践、自主探究和合作交流,在观察、实验、猜测、验证、交流等数学活动中解决问题、并初步发展学生解决问题的策略。
1.4 联系实际、应用拓展,提高学生的问题解决意识。数学学习的最终目的是让学生运用所学的知识去解决生活中的问题,让学生在面对实际问题时,能主动尝试从数学的角度出发,运用所学的知识寻找解决问题的策略。提高学生问题解决的意识,最有效的方法是让学生有机会亲身实践。
2 解决问题有哪些策略
学生在数学学习中常为遇到一些棘手的难题,不知道从何处入手分析、解决数学问题而苦恼,普遍比较缺乏解决问题的方法与策略。教师若能在平时的教学或辅导中教给他们若干解决数学问题的策略,对学生将会起到启迪思维,激发学习数学的兴趣,掌握解决数学问题技巧的作用。
2.1 对比分析策略。大多学生在做一些计算题时,不善于观察题中运算符号和数字的特征,就急于动笔计算;而对于一些能采用简便方法计算的题目,学生又不知怎样简算。此时,教师就可以采用对比分析策略。写出对比式,引导学生观察、分析异同,让学生自己发现简便算法,并要求他们以后按照一看(看题中运算符号和数字的特征)、二想(想采用什么方法计算)、三算(动笔计算)、四验(每算完一步及时检验)的步骤进行运算。
2.2 实际操作——知识迁移。实际操作就是通过学生的摆一摆,剪一剪,量一量,拼一拼等,对事物进行调整理顺,直到发现正确的答案。所谓知识迁移:就是把看起来比较复杂的,没有现成计算方法的,通过化简,拼凑,变形的方法将新的知识转移到学过的知识上去,从旧的知识中得出新的知识来。如“平行四边形面积公式的推导”,就需要学生动手制作,画一画,剪一剪,拼一拼,如拼成一个和它面积相等的长方形或者是正方形。使学生从中感悟到将要学的知识化成旧的知识,让学生通过各种操作、推理获得新知识,感悟出解决问题的策略。
2.3 设数计算策略。有些数学问题比较抽象,若按常规方法去分析、解答,则很难求解。如能突破常规,先将题中的某些条件设为具体数据(所设数据要便于计算)或简单实例,便可从中发现解题规律,使问题化难为易。
2.4 数形结合策略:“数形结合”是数学中比较重要的一种思想方法和解题策略,其实质是将抽象的数学语言与直观的图像结合起来,在数的问题与形的问题之间互相转换,使数的问题图形化,形的问题代数化,从而使复杂题简单化,抽象问题具体化。
要发展学生解决问题的能力,关键是加强对学生思维策略的指导,要教学生解题策略和思想方法,如对应思想、化归思想、转换思想、统计思想等,同时,教给学生一些数学方法,如观察法、实验操作法、归纳和演绎、画图等。加强对学生思维策略的指导,让学生学会根据提出的问题进行探索,用数学的思维方式去分析问题、解决问题,可以更好地发展学生的直觉思维、辩证思维和形式逻辑思维等,更好地优化思维结构,培养学生的创新意识和解决问题的能力。