论文部分内容阅读
【摘 要】 计算机网络的发展带来的是人们在机械故障诊断中崭新的诊断模式。粗糙集理论对于数据分析和推理有着其科学化的建模模式,本文通过对粗糙集理论的介绍,说明了其在机械故障诊断中的应用。
【关键词】 粗糙集理论;机械故障;应用
一、前言
在对机械故障进行分析的时候,如何对其数据进行分析是判断其故障类型的一个关键点。粗糙集理论便是在处理数据、分析数据上有着其独到之处,在机械故障诊断中应用粗糙集理论能提升故障诊断的效率。
二、粗糙集理论的背景及应用
粗糙集理论是波兰科学家Z.Pawlak于1982年提出的一种关于数据分析和推理的理论。1991年Z.Pawlak出版了第一本关于粗糙集的专著《Rough set:theoretical aspects of reasoning about data》,成为粗糙集理论研究的第一个里程碑。1993年在加拿大召开第二届国际粗糙集理论与知识发现研讨会,由于当时正值数据库知识发现(KDD)成为研究的热门话题,一些著名KDD学者参加了这次会议,介绍了许多应用扩展粗糙集理论的知识发现方法与系统。我国对粗糙集理论的研究起步较晚,始于20世纪90年代初期。王珏等人在将粗糙集理论引入作出了重要贡献。2001年5月在重庆举行了第一届中国粗糙集理论与软计算学术研讨会(CRSSC)。
粗糙集理论与模式识别、机器学习、数据库等理论相结合,开发了多个原型系统,其中有代表性的有Rosetta系统、KDD-R系统、LERS系统等。粗糙集应用在许多方面。
1.连续属性的离散化
一般来说,数据库中的属性可以分为两种类型:一种是连续(也称定量)属性,表示对象的某些可测性质,其取值自某个连续区间,如温度等;另一种是离散(定性)属性,这种属性值使用语言或少量离散值来表述,如性别等。在大多数情况下,同一个数据库中既包含连续属性,也包含离散属性。粗糙集理论为处理离散属性提供了很有效的工具,但遗憾的是不能直接处理连续属性。所以,连续属性的离散化是制约粗糙集理论实用化的难点之一。目前已有一些离散化方法:Slowinski在研究一个医疗诊断决策表的粗糙分类时,利用粗糙集理论将这类数据转换成定性词或词汇表示的属性值,如低、中、高等,在医疗诊断实践中,这种转换一般是根据专家的经验标准来完成的,像这样利用领域知识进行连续属性离散化的方法称之为S方法。
2.不完備信息处理
由于一些原因,如对数据测量的误差、数据处理和数据获取的限制等,造成数据丢失,而经典粗糙集理论只能处理完备的信息系统。为了利用粗糙集理论处理不完备数据,很多学者提出了各自不同的方法,基本上都是基于对等价关系的泛化来解决的。如相似关系、容差关系、限制容差关系等。粗糙集理论在不完备信息系统中的应用增大了其实用性。
3.粗糙集与模糊集
粗糙集和模糊集在处理不确定性和不精确性问题方面都推广了经典集合论,都能处理不完备数据,但方法不同,粗糙集强调数据的不可辨别、不精确和模棱两可,模糊集则注重描述信息的含糊程度。虽然有一定的相容性和相似性,但它们的侧重面不同:粗糙集理论的计算方法是知识的表达和简化,模糊集理论的计算方法主要是连续特征函数的产生;从集合的关系来看,粗糙集强调的是对象间的不可分辨性,而模糊集强调的是集合边界的病态定义上的,即边界的不分明性;从知识的“粒度”的描述上来看,粗糙集是通过一个集合关于某个可利用的知识库的上下近似来描述的,而模糊集通过对象关于集合的隶属程度来近似描述的;从研究的对象来看,粗糙集研究的是不同类中的对象组成的集合关系,重在分类,而模糊集研究的是属于同一类的不同对象间的隶属关系,重在隶属程度。因此粗糙集和模糊集是两种不同的理论,但它们又不是相互对立的,在处理不完备数据方面可以互为补充。目前已有的模糊粗糙集模型有Radzikowska模型、Morsi模型、Dubois模型、Greco模型、MI模型、Wu模型等。
三、粗糙集研究的热点
1.大数据集问题
在现实中,许多实现问题所协及到的数据往往很多,因此运算和处理的工作量会越来越大,因此,我们必须要寻找到一种快速、高效的算法和处理方法,来提高对数据的处理和运算的效率。
2.高效的约简算法
实现问题所协及到的属性越来越多,而在大量的属性中,并不是所有的属性都是同等重要的,因此,如何快速而高效地获得影响问题的最重要的属性是非常重要的。
3.缺失值的处理问题
我们在具体处理某些问题时,由于各种各样的原因,常常会碰到数据不完整即丢失数据的现象。由于经典粗糙集理论只能处理具有完备数据的信息系统,因此,我们必须对丢失的数据做某种处理。
4.对连续数据进行离散化处理的问题
现实生活中遇到的数据往往是连续型的,而粗糙集只能对离散化数据进行处理,所以,怎样把连续型的数据进行离散化的研究显得非常重要。
5.多种方法融合的问题
粗糙集理论分析和处理数据的方法与其他一些分析和处理数据的方法并不是对立的,况且粗糙集在处理数据时也有一定的故障,所以,将粗糙集和模糊集、概率论等方法相融合进行数据处理或许能够更准确和更有效地处理数据。
还有象数据相关性的发现、数据意义的评估、数据产生决策控制、数据的近似分类等方面,这些方面的研究都是现在粗糙集理论研究与应用研究的热点之一,并越来越受到世界各国许多专家和研究者的关注。
6.粗糙集理论及应用的研究展望
然而,粗糙集理论这门学科毕竟还非常年轻,还有许多地方需要我们去不断完善。从理论研究方面来说,其研究工作可以从粗糙集模型的扩展来进行,从而在理论上推动该学科的发展。另外,当粗糙集模型得到扩展以后,研究者即可在相关模型下进行相应的应用研究。 四、基于粗糙集理论的机械系统故障模型
基于粗糙集理论的机械设备故障模型就是通过粗糙集理论对机械系统故障数据处理后进行分类得到规则,得出故障发生的大致规律,从而为检修试驗人员提供参考的数据。用粗糙集理论对决策表进行的关键操作就是决策表的简约,所以首先要确定决策表中的条件属性和决策属性在模型中所对应的实际量。决策属性显然就是故障出现的几率,而条件属性就是引起这些故障出现的原因。运用粗糙集理论进行条件属性的简约后,仍然能够保持信息的分类能力。这说明在故障出现信息中存在许多冗余数据,这些数据给分析故障出现的规律带来了大量的多余的工作量,去除这些数据后故障出现规律变得简洁。
故障分析过程的几点说明:
1.某些时候检修试验人员在决策过程中要特别对一些由于温度、湿度、负荷大小等造成的故障进行观察,此时可在用户定义属性集中设置相应的条件属性。如果这些属性对于决策属性是冗余的,则可能得到一个不同的归约集,但是与原始的决策表还是有相同的分类能力。
2.本文中采用在属性简约算法中设定不同的用户定义属性集来产生不同的简约规则集,这些不同的简约规则集既是用于信息融合的不同的证据体。
3.当采用证据理论作为信息融合的方法进行故障分析时,对于每一个被分析的样本,在各个规则集中按照条件属性选出相应的分析规则,再通过证据理论得出分析结论的信任度,如果信任度大于某个值,则认为该融合后的分析规则是有效的,然后就可以用之对样本进行分析了。
五、机械故障诊断的发展趋势
对机械装置事故的判断手段要和当下走在最前端的科学技术所结合,是其前进发展趋势。现代事故判断方法的前进方向是判断思想、判断模式的多样化,传感设备的准确化、多样性,判断方法的智能化,主要体现在以下五个方面:
1.和现代含科技成分最多的技术特别是激光检测手段的结合。最近几年以来,激光手段的运用开始从医疗、军事、设备制作等方面前进到探测以及装备事故判断中,同时在旋转设备中已经有所成果。
2.与最新信号处理方法相融合。随着新的信号处理方法在设各故障诊断领域中的应用,传统的基于快速弗利叶变换的信号分析技术有了新的突破性进展。
3.与非线性原理和方法的融合。机械设备在发生故障时,其行为往往表现为非线性特征。如旋转机械的转子在不平衡外力的作用下表现出的非线性振动。随着混沌与分型几何方法的日趋完善,这类问题必将得到进一步解决。
4.将多元传感方式融入其中。智能型生产规定机器必须有整体,各个角度的检测与保养,这样能够对机器的日常运行情况有个整体的掌握。所以,对机器事故判断的过程中,能够使用几个传感器同一时间对机器每个部位进行监控,接着根据指定的方式分析得到的数据,例如人工式精神网络技术。
5.将现代化的技术融入其中。其中就包括了:专家机制、神经网络、模糊式逻辑思维以及进化算法等。现代自动化技术在机器事故判断系统里有很广泛的平台,伴随现代化技术的进步。机器状态的自动化检测与事故判断是事故判断系统的必然要求。
六、结束语
综上所述,粗糙集理论是一门比较新颖的算法,该理论在实际的机械故障诊断中相比传统方法其诊断成功率有着很大的提升,在以后的机械故障诊断中有着很好的发展方向。
参考文献:
[1]王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[J].计算机学报.2010.7(32):1229-1246.
[2]陈奇南,梁洪峻.模糊集和粗糙集[A].计算机工程,2012,8(28):138-140.
[3]黄正华,胡宝清.模糊粗糙集理论研究进展[A].模糊系统与数学.2011.4(19):125-134.
【关键词】 粗糙集理论;机械故障;应用
一、前言
在对机械故障进行分析的时候,如何对其数据进行分析是判断其故障类型的一个关键点。粗糙集理论便是在处理数据、分析数据上有着其独到之处,在机械故障诊断中应用粗糙集理论能提升故障诊断的效率。
二、粗糙集理论的背景及应用
粗糙集理论是波兰科学家Z.Pawlak于1982年提出的一种关于数据分析和推理的理论。1991年Z.Pawlak出版了第一本关于粗糙集的专著《Rough set:theoretical aspects of reasoning about data》,成为粗糙集理论研究的第一个里程碑。1993年在加拿大召开第二届国际粗糙集理论与知识发现研讨会,由于当时正值数据库知识发现(KDD)成为研究的热门话题,一些著名KDD学者参加了这次会议,介绍了许多应用扩展粗糙集理论的知识发现方法与系统。我国对粗糙集理论的研究起步较晚,始于20世纪90年代初期。王珏等人在将粗糙集理论引入作出了重要贡献。2001年5月在重庆举行了第一届中国粗糙集理论与软计算学术研讨会(CRSSC)。
粗糙集理论与模式识别、机器学习、数据库等理论相结合,开发了多个原型系统,其中有代表性的有Rosetta系统、KDD-R系统、LERS系统等。粗糙集应用在许多方面。
1.连续属性的离散化
一般来说,数据库中的属性可以分为两种类型:一种是连续(也称定量)属性,表示对象的某些可测性质,其取值自某个连续区间,如温度等;另一种是离散(定性)属性,这种属性值使用语言或少量离散值来表述,如性别等。在大多数情况下,同一个数据库中既包含连续属性,也包含离散属性。粗糙集理论为处理离散属性提供了很有效的工具,但遗憾的是不能直接处理连续属性。所以,连续属性的离散化是制约粗糙集理论实用化的难点之一。目前已有一些离散化方法:Slowinski在研究一个医疗诊断决策表的粗糙分类时,利用粗糙集理论将这类数据转换成定性词或词汇表示的属性值,如低、中、高等,在医疗诊断实践中,这种转换一般是根据专家的经验标准来完成的,像这样利用领域知识进行连续属性离散化的方法称之为S方法。
2.不完備信息处理
由于一些原因,如对数据测量的误差、数据处理和数据获取的限制等,造成数据丢失,而经典粗糙集理论只能处理完备的信息系统。为了利用粗糙集理论处理不完备数据,很多学者提出了各自不同的方法,基本上都是基于对等价关系的泛化来解决的。如相似关系、容差关系、限制容差关系等。粗糙集理论在不完备信息系统中的应用增大了其实用性。
3.粗糙集与模糊集
粗糙集和模糊集在处理不确定性和不精确性问题方面都推广了经典集合论,都能处理不完备数据,但方法不同,粗糙集强调数据的不可辨别、不精确和模棱两可,模糊集则注重描述信息的含糊程度。虽然有一定的相容性和相似性,但它们的侧重面不同:粗糙集理论的计算方法是知识的表达和简化,模糊集理论的计算方法主要是连续特征函数的产生;从集合的关系来看,粗糙集强调的是对象间的不可分辨性,而模糊集强调的是集合边界的病态定义上的,即边界的不分明性;从知识的“粒度”的描述上来看,粗糙集是通过一个集合关于某个可利用的知识库的上下近似来描述的,而模糊集通过对象关于集合的隶属程度来近似描述的;从研究的对象来看,粗糙集研究的是不同类中的对象组成的集合关系,重在分类,而模糊集研究的是属于同一类的不同对象间的隶属关系,重在隶属程度。因此粗糙集和模糊集是两种不同的理论,但它们又不是相互对立的,在处理不完备数据方面可以互为补充。目前已有的模糊粗糙集模型有Radzikowska模型、Morsi模型、Dubois模型、Greco模型、MI模型、Wu模型等。
三、粗糙集研究的热点
1.大数据集问题
在现实中,许多实现问题所协及到的数据往往很多,因此运算和处理的工作量会越来越大,因此,我们必须要寻找到一种快速、高效的算法和处理方法,来提高对数据的处理和运算的效率。
2.高效的约简算法
实现问题所协及到的属性越来越多,而在大量的属性中,并不是所有的属性都是同等重要的,因此,如何快速而高效地获得影响问题的最重要的属性是非常重要的。
3.缺失值的处理问题
我们在具体处理某些问题时,由于各种各样的原因,常常会碰到数据不完整即丢失数据的现象。由于经典粗糙集理论只能处理具有完备数据的信息系统,因此,我们必须对丢失的数据做某种处理。
4.对连续数据进行离散化处理的问题
现实生活中遇到的数据往往是连续型的,而粗糙集只能对离散化数据进行处理,所以,怎样把连续型的数据进行离散化的研究显得非常重要。
5.多种方法融合的问题
粗糙集理论分析和处理数据的方法与其他一些分析和处理数据的方法并不是对立的,况且粗糙集在处理数据时也有一定的故障,所以,将粗糙集和模糊集、概率论等方法相融合进行数据处理或许能够更准确和更有效地处理数据。
还有象数据相关性的发现、数据意义的评估、数据产生决策控制、数据的近似分类等方面,这些方面的研究都是现在粗糙集理论研究与应用研究的热点之一,并越来越受到世界各国许多专家和研究者的关注。
6.粗糙集理论及应用的研究展望
然而,粗糙集理论这门学科毕竟还非常年轻,还有许多地方需要我们去不断完善。从理论研究方面来说,其研究工作可以从粗糙集模型的扩展来进行,从而在理论上推动该学科的发展。另外,当粗糙集模型得到扩展以后,研究者即可在相关模型下进行相应的应用研究。 四、基于粗糙集理论的机械系统故障模型
基于粗糙集理论的机械设备故障模型就是通过粗糙集理论对机械系统故障数据处理后进行分类得到规则,得出故障发生的大致规律,从而为检修试驗人员提供参考的数据。用粗糙集理论对决策表进行的关键操作就是决策表的简约,所以首先要确定决策表中的条件属性和决策属性在模型中所对应的实际量。决策属性显然就是故障出现的几率,而条件属性就是引起这些故障出现的原因。运用粗糙集理论进行条件属性的简约后,仍然能够保持信息的分类能力。这说明在故障出现信息中存在许多冗余数据,这些数据给分析故障出现的规律带来了大量的多余的工作量,去除这些数据后故障出现规律变得简洁。
故障分析过程的几点说明:
1.某些时候检修试验人员在决策过程中要特别对一些由于温度、湿度、负荷大小等造成的故障进行观察,此时可在用户定义属性集中设置相应的条件属性。如果这些属性对于决策属性是冗余的,则可能得到一个不同的归约集,但是与原始的决策表还是有相同的分类能力。
2.本文中采用在属性简约算法中设定不同的用户定义属性集来产生不同的简约规则集,这些不同的简约规则集既是用于信息融合的不同的证据体。
3.当采用证据理论作为信息融合的方法进行故障分析时,对于每一个被分析的样本,在各个规则集中按照条件属性选出相应的分析规则,再通过证据理论得出分析结论的信任度,如果信任度大于某个值,则认为该融合后的分析规则是有效的,然后就可以用之对样本进行分析了。
五、机械故障诊断的发展趋势
对机械装置事故的判断手段要和当下走在最前端的科学技术所结合,是其前进发展趋势。现代事故判断方法的前进方向是判断思想、判断模式的多样化,传感设备的准确化、多样性,判断方法的智能化,主要体现在以下五个方面:
1.和现代含科技成分最多的技术特别是激光检测手段的结合。最近几年以来,激光手段的运用开始从医疗、军事、设备制作等方面前进到探测以及装备事故判断中,同时在旋转设备中已经有所成果。
2.与最新信号处理方法相融合。随着新的信号处理方法在设各故障诊断领域中的应用,传统的基于快速弗利叶变换的信号分析技术有了新的突破性进展。
3.与非线性原理和方法的融合。机械设备在发生故障时,其行为往往表现为非线性特征。如旋转机械的转子在不平衡外力的作用下表现出的非线性振动。随着混沌与分型几何方法的日趋完善,这类问题必将得到进一步解决。
4.将多元传感方式融入其中。智能型生产规定机器必须有整体,各个角度的检测与保养,这样能够对机器的日常运行情况有个整体的掌握。所以,对机器事故判断的过程中,能够使用几个传感器同一时间对机器每个部位进行监控,接着根据指定的方式分析得到的数据,例如人工式精神网络技术。
5.将现代化的技术融入其中。其中就包括了:专家机制、神经网络、模糊式逻辑思维以及进化算法等。现代自动化技术在机器事故判断系统里有很广泛的平台,伴随现代化技术的进步。机器状态的自动化检测与事故判断是事故判断系统的必然要求。
六、结束语
综上所述,粗糙集理论是一门比较新颖的算法,该理论在实际的机械故障诊断中相比传统方法其诊断成功率有着很大的提升,在以后的机械故障诊断中有着很好的发展方向。
参考文献:
[1]王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[J].计算机学报.2010.7(32):1229-1246.
[2]陈奇南,梁洪峻.模糊集和粗糙集[A].计算机工程,2012,8(28):138-140.
[3]黄正华,胡宝清.模糊粗糙集理论研究进展[A].模糊系统与数学.2011.4(19):125-134.