论文部分内容阅读
“两案”是指“学案”和“教案”。“两案”是以荷兰著名数学家弗赖登塔尔的“再创造教学”理论、美国著名教育家和心理学家布鲁姆的“掌握学习”策略、美国著名数学教育家G·波利亚“主动学习”原则,以及现代教育学、心理学的有关理论为依据,充分体现“学生为主体、教师为主导、思维训练为主线、能力培养为主攻”的教学原则,让学生在学习中参与、参与中学习,变“讲—练—讲”为“练—讲—练”,变“知识—方法—题目”为“问题—联想—提高”,变“听讲—模仿—强记”为“导练—解疑—形成能力”,让学生在动脑、动口、动手的过程中,激发兴趣,掌握知识,训练思维,形成能力.“两案”的设计原则应关注学生学习的全过程,关注不同学生的差异性,关注学生学习的有效性。“学案”中三个环节“学前准备、课堂探究、延伸拓展”作业的优化设计是一个重点。经过两年多时间的摸索、实践与研究,我提出以下几点思考:
一、学前准备
“学案”的环节之一为“学前准备”,我们鼓励学生利用课余时间预习。为了提高学生课前预习的有效性和积极性,在预习阶段要求学生对新知识作初步的了解,所以设置的预习题以基础为主,实现低层次目标的自达。保证所有同学能自行解决“学案”中的学前準备内容,对难以解决的问题做好标记,以便在课堂上向老师和同学质疑。
(1)旧知识的回顾。在学生接受新知之前,考察学生是否具备了与新知有关的知识与技能,缩短新旧知识之间的距离。案例中的第1题分别用代入消元法和加减消元法解方程组,此题设计目的是巩固学生正确、熟练解二元一次方程组,为解决新知扎实基础。
(2)新知识的简单尝试。上课前教师收齐“学案”,批阅“学前准备”这一部分的内容,然后对“学案”再次进行补充完善,以学定教。在课上有针对性地点拨,课堂效率就提高了。
二、课堂探究
学生理解和掌握的知识是要通过训练去强化,通过运用去巩固和提高的,这样才能内化为学生的素质,形成学习能力。所以,我认为课堂研讨部分的练习设计应注意适度和适量。
(1) 要注重课内例题的基础性、典型性、坡度性。例题的设计和选择要体现基础性、典型性、坡度性。例题主要采用书上的例题,但采用之前必须进行适当改变,哪怕改变计算题中的一个数字或几何证明中的一个字母(防止少数学生在自学时不动脑筋的抄,而是必须自学看懂书上例题,再做“学案”上的预习题目);呈现方式上一题多变,利用书上的例题进行变式、挖掘和提高,从深度和广度上来挖掘例题的作用。同时几个例题要步步为营,步步深入,有一定的坡度性。还是以“一次方程组的应用”这内容为例,在第二节课设计例题时,可以把例题2的结论进行适当变式,因为对于“用直接未知量来设二元一次方程组解决问题” 在第1节课中学生已经掌握很好,不妨通过变式呈现一个“用间接未知量来设二元一次方程组解决问题”的题目,从而提高学生解决此类问题的能力。
(2)课堂练习要适量。课堂作业是课堂教学中的再次反馈活动,要给学生充分的时间思考。所以课堂作业练习要适量,保证课堂作业当堂完成。在学生进行课内作业时,教师应巡视,掌握典型错误,当堂反馈纠正。要重视学生作业的规范性、合理性和独创性。对学生在预习导学作业中或课堂研讨练习中出现的问题和独到见解,应及时讲评和反馈,对教学进行适时调控。当然对“学有余力”的学生可引导他们做“延伸拓展”中的二、三星级提高题。如有疑难,教师可引导学生进行分组探讨与评议,让学生两人一组或前后相邻两桌同学合作学习,相互讨论,相互解答,教师以平等的身份参与这些小组学习讨论,适时给予学生点拨或帮助,重点对差生、优生施以个别教学辅导,激励和强化中等生,从而逐步解决教学过程中差生转化和优等生的发展问题。
三、延伸拓展
(1)精选练习题。精选练习题,我在题目的选择时,做到与教学内容配套,合适梯度,由易到难,坚持以训练基本功、基本思路和方法为主,基本练习与综合练习相结合,为了达到这个目标,事先对题目进行认真的分析:解题时需要用到哪些新授数学概念、定理及知识点;解题所涉及的方法和技巧;以及学生在这方面训练的熟练程度;解题过程的关键处和易错处都了然于胸。
(2)自编练习题。试题都是源于书本,只是命题人在题设条件、问题的情境和设问方式上作了适当的变换,中考题就是把平时练习中的题目通过给出新的情景、改变设问方式、互换条件与结论等手段改编而成。这样的试题给人一种似曾相识而又似是而非的感觉,很多学生由于思维定势造成失分,此时应变能力至关重要。因而我们在平时作业中,有意识地对一些可以改编的问题进行变式训练、题组训练,让学生进一步掌握这类问题的本质及其通性通法,同时有意识进行一题多解,培养学生发散思维能力,丰富教学内容。
(3)设计层次性作业,让学生体验成功。数学新课标指出,由于学生所处的文化环境、家庭背境和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼和富有个性的过程。因此,学生之间的数学能力存在着差异。为了实现“不同的人在数学上得到不同的发展”,设计作业时,不能搞“一刀切”,而应从学生的实际出发,设计层次性作业,为不同发展水平的学生创设练习和提高的平台,让学生在实践中体验成功。①难度的分层。根据学生实际,分层设计作业,让不同水平的学生自主选择,给学生作业的“弹性权”,实现“人人能练习,人人能成功”,让学生学有所得,练有所获。当然,每个学生的学习接受的能力是不同的,为防止差生“吃不了”、优生“吃不饱”的现象,所以我们根据学生的不同层次,把作业设为必做题,选做题甚至渗透竞赛的题目,让学有余力的同学完成。②数量的分层。学生可以根据自己的实际,能做几道题就做几道题,教师不作“硬性”规定(当然老师心里有一个谱),设计的作业太多或太难就会让学生失去对数学练习的兴趣,教师逼急了,他一抄了之,应付一下。特别是学习有困难的学生,一般情况下,他们做练习的速度可能由于基础或者习惯方面的原因会很慢,如果数学题目的容量经常多得无法完成,就容易滋长“债欠多了不愁”的心理。
(4)从学生的错误中设计题目。学生在作业中的错误形形色色,教师要做一个有心人,把每天学生的各类错误收集起来,记在教师“学案”后面空白处,在合适的时间把相近、相似、易混、易错的概念和知识组织在一起,形成对比,加深对概念的理解和对知识的掌握。教师根据教材单元内容的重难点和利用学生身边最常见的错误,进行分析,设计一些针对性的训练,采用间隔性的或阶段性的过关制度,如周周练、月月练等,达成学生知识掌握的效果。
一、学前准备
“学案”的环节之一为“学前准备”,我们鼓励学生利用课余时间预习。为了提高学生课前预习的有效性和积极性,在预习阶段要求学生对新知识作初步的了解,所以设置的预习题以基础为主,实现低层次目标的自达。保证所有同学能自行解决“学案”中的学前準备内容,对难以解决的问题做好标记,以便在课堂上向老师和同学质疑。
(1)旧知识的回顾。在学生接受新知之前,考察学生是否具备了与新知有关的知识与技能,缩短新旧知识之间的距离。案例中的第1题分别用代入消元法和加减消元法解方程组,此题设计目的是巩固学生正确、熟练解二元一次方程组,为解决新知扎实基础。
(2)新知识的简单尝试。上课前教师收齐“学案”,批阅“学前准备”这一部分的内容,然后对“学案”再次进行补充完善,以学定教。在课上有针对性地点拨,课堂效率就提高了。
二、课堂探究
学生理解和掌握的知识是要通过训练去强化,通过运用去巩固和提高的,这样才能内化为学生的素质,形成学习能力。所以,我认为课堂研讨部分的练习设计应注意适度和适量。
(1) 要注重课内例题的基础性、典型性、坡度性。例题的设计和选择要体现基础性、典型性、坡度性。例题主要采用书上的例题,但采用之前必须进行适当改变,哪怕改变计算题中的一个数字或几何证明中的一个字母(防止少数学生在自学时不动脑筋的抄,而是必须自学看懂书上例题,再做“学案”上的预习题目);呈现方式上一题多变,利用书上的例题进行变式、挖掘和提高,从深度和广度上来挖掘例题的作用。同时几个例题要步步为营,步步深入,有一定的坡度性。还是以“一次方程组的应用”这内容为例,在第二节课设计例题时,可以把例题2的结论进行适当变式,因为对于“用直接未知量来设二元一次方程组解决问题” 在第1节课中学生已经掌握很好,不妨通过变式呈现一个“用间接未知量来设二元一次方程组解决问题”的题目,从而提高学生解决此类问题的能力。
(2)课堂练习要适量。课堂作业是课堂教学中的再次反馈活动,要给学生充分的时间思考。所以课堂作业练习要适量,保证课堂作业当堂完成。在学生进行课内作业时,教师应巡视,掌握典型错误,当堂反馈纠正。要重视学生作业的规范性、合理性和独创性。对学生在预习导学作业中或课堂研讨练习中出现的问题和独到见解,应及时讲评和反馈,对教学进行适时调控。当然对“学有余力”的学生可引导他们做“延伸拓展”中的二、三星级提高题。如有疑难,教师可引导学生进行分组探讨与评议,让学生两人一组或前后相邻两桌同学合作学习,相互讨论,相互解答,教师以平等的身份参与这些小组学习讨论,适时给予学生点拨或帮助,重点对差生、优生施以个别教学辅导,激励和强化中等生,从而逐步解决教学过程中差生转化和优等生的发展问题。
三、延伸拓展
(1)精选练习题。精选练习题,我在题目的选择时,做到与教学内容配套,合适梯度,由易到难,坚持以训练基本功、基本思路和方法为主,基本练习与综合练习相结合,为了达到这个目标,事先对题目进行认真的分析:解题时需要用到哪些新授数学概念、定理及知识点;解题所涉及的方法和技巧;以及学生在这方面训练的熟练程度;解题过程的关键处和易错处都了然于胸。
(2)自编练习题。试题都是源于书本,只是命题人在题设条件、问题的情境和设问方式上作了适当的变换,中考题就是把平时练习中的题目通过给出新的情景、改变设问方式、互换条件与结论等手段改编而成。这样的试题给人一种似曾相识而又似是而非的感觉,很多学生由于思维定势造成失分,此时应变能力至关重要。因而我们在平时作业中,有意识地对一些可以改编的问题进行变式训练、题组训练,让学生进一步掌握这类问题的本质及其通性通法,同时有意识进行一题多解,培养学生发散思维能力,丰富教学内容。
(3)设计层次性作业,让学生体验成功。数学新课标指出,由于学生所处的文化环境、家庭背境和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼和富有个性的过程。因此,学生之间的数学能力存在着差异。为了实现“不同的人在数学上得到不同的发展”,设计作业时,不能搞“一刀切”,而应从学生的实际出发,设计层次性作业,为不同发展水平的学生创设练习和提高的平台,让学生在实践中体验成功。①难度的分层。根据学生实际,分层设计作业,让不同水平的学生自主选择,给学生作业的“弹性权”,实现“人人能练习,人人能成功”,让学生学有所得,练有所获。当然,每个学生的学习接受的能力是不同的,为防止差生“吃不了”、优生“吃不饱”的现象,所以我们根据学生的不同层次,把作业设为必做题,选做题甚至渗透竞赛的题目,让学有余力的同学完成。②数量的分层。学生可以根据自己的实际,能做几道题就做几道题,教师不作“硬性”规定(当然老师心里有一个谱),设计的作业太多或太难就会让学生失去对数学练习的兴趣,教师逼急了,他一抄了之,应付一下。特别是学习有困难的学生,一般情况下,他们做练习的速度可能由于基础或者习惯方面的原因会很慢,如果数学题目的容量经常多得无法完成,就容易滋长“债欠多了不愁”的心理。
(4)从学生的错误中设计题目。学生在作业中的错误形形色色,教师要做一个有心人,把每天学生的各类错误收集起来,记在教师“学案”后面空白处,在合适的时间把相近、相似、易混、易错的概念和知识组织在一起,形成对比,加深对概念的理解和对知识的掌握。教师根据教材单元内容的重难点和利用学生身边最常见的错误,进行分析,设计一些针对性的训练,采用间隔性的或阶段性的过关制度,如周周练、月月练等,达成学生知识掌握的效果。