论文部分内容阅读
1、概念教学要结合实际,让概念有意义化。
苏科版教材中一般的数学概念,都是通过对实验 现象或某些具体的事例的分析,经过抽象概括而导出的,它有一个形成的过程。它们一般是从几个原始的概念或者公理出发,通过一番推理而扩展成为一系列的定义或者定理.而每一个新出现的概念都依赖着已有的概念来表达,或是由已有的概念推导出来的。例如苏科版九上中的“一元二次方程”的概念,它就是由前置概念推导而来的,它缘自于苏科版八下中“一元一次方程”的概念,而“一元一次方程” 的概念又是以苏科版七下“整式方程、方程”等作为预备概念而得出的。如果对以上某一概念不理解或者一知半解,那得出新的概念或者它的解法就会有一定的难度,因此,在平时的教学中我们一定要注意概念教学的顺序性。正是这些概念的出现的顺序性才将我们的教材有机地串联在一起,形成知识的网络结构图。
针对概念形成的阶段性、发展性和连贯性,我们教师教学中应当注意:在学生对某些预备概念模糊不清的情况下,千万不要急于引入新概念,最好先复习涉及新概念的相关预备概念,尤其是对特别重要的、关键性的预备概念,教师要反复强调,以求得学生较为彻底的理解,方可为新概念的导入作出良好的铺垫。
如在教学《有理数》的概念时,我以前的做法一般是在黑板上例出各种小数,让学生观察它们的特点。这种做法,生搬硬套,效果不是很好。听了讲座后,我试想一下是否可以这样教,先准备好0—9的卡片,让学生上讲台摸出一张,把卡片上的数记在小数点后面,随着摸卡片的学生越多,学生就会发现小数点后面的数越多,教师借止机会归纳:“不错,这样得到的小数,一般是一个无限不循环小数。这种无限不循环小数与我们已经学过的有限小数、无限循环小数不同,是一类新数,我们称它为“无理数”,这就是我们今天要学习的主题。对这种摸奖式的摸球,学生对它有着非常丰富的感性经验.以摸乒乓球得到的数来产生一个具体的位数可以不断延伸的小数,为学生提供了一个可以“感触”的非常直观的无理数模型,使本来遥不可及的数学概念具体地走到学生的面前,赋予无理数一个真实可信的意义,使概念更容易接受、更有意义。
2、注重概念的形成过程。
平时在教学《相反意义的量》时,没有注意知识的探究过程,往往直接生搬硬套得出正负数的概念。能过这次学习后,我想是不是能通过以下改进。教学上先用多媒体演示:“一个人向东走3步,向西走4步;在一个装有糖果的盘子里增加4个糖果,再取走5个糖果等。”然后引导学生观察每一事例在数量上的变化情况,并要学生用语言描述以上3个事例,引导学生概括出其中数量上的变化情况,并板书,再请同学思考:(1)事例中什么在发生变化?(2)怎样变化?(3)变化的意义是否相同?(4)三个不同事例变化的共同之处是什么?经过讨论、交流,学生认识到它们的共同之处在于数量的变化都是相反的。在明确考察的对象是事物数量对应性变化这个问题后,请同学们列举类似的事例以进一步理解概念。然后再任选学生的举例提问:“向南走3步,向北走4步;支出200元,再赢利300元;两句话中两个量变化有何区别。”引导学生关注量所反映的方向,进而引导学生在比较中关注量的相对性质,最后由学生来思考概括所有相关例子中共同的东西,即他们都是相反意义的量,而非“相同意义的量”或“不同意义的量”。
在堂课里,通过学生对相对具体事物的直接观察、感知、分析、比较,进而抽象概括出概念,整个过程引导 学生成为“相反意义的量”概念本质的“发现者”,亲自参与了由表及里的不断深入的理解过程,从而品尝了发现所带来的快乐,实践了抽取实际事物量的关系而舍弃其他一切表面现象的一种思维活动。这样的探究教学活跃了学生的思维,数学变得亲近,学生乐于接受。
3、数学概念的情境性教学
中学数学教材中的许多原始概念,如点、线、面、体、数、常数、变数等等,都是由具体的事物观察然后再抽象出来的。人们长期观察了月亮、太阳、光线、水面等具体事物,逐步形成了有关“圆”、“直线”、“平面”等带有共性的、本质的概念。这些概念是对具体的数和形的感知而形成的表象,然后再由表象经过抽象、概括而形成的。例如:正方形的面积S和它的边长a之间的关系是S=a,边长a可在a>0的范围内任意选取,对于a的每一个确定的值,其面积S都有一个确定的值与它相对应。若抛开这个个性的关系,抽出共性的东西,并加以概括,就可以得到函数的概念:“在某个变化过程中有两个变量x和y,若对于x在某一范围内的任一个取值,y都有惟一一个确定的值与它相对应,那么,我们就把y称之为x的函数。”由此可知,概念是人们对感性材料进行抽象的产物;感性认识是形成概念的基础。如果学生没有感性认识或感性认识不完备时,我们就应该借助于实物、模型、教具、图形或形象的语言进行较为直观的教学,从而使学生从中获得感性认识。对于一些概念(属概念),教师可以直接从已知的概念(种概念)中引入,不必再经过取得感性认识的阶段。如有理数的概念,就可以直接从整数、分数的概念中引入。
4、巩固对概念的理解
旦获得,如不及时巩固,就会被遗忘。巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征,同时,应注重应用概念的变式练习。恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。如“分式”与“整式”的概念教学中,可举出如“x与1/x为例,通过这样的训练,能有效地排除外在形式的干扰,对“分式”与“整式”的理解更加深刻。最后,巩固时还要通过适当的正反例子比较,把所教概念同类似的、相关的概念比较,分清它们的异同点,并注意适用范围,小心隐含“陷阱”,帮助学生从中反省,以激起对知识更为深刻的正面思考,使获得的概念更加精确、稳定和易于迁移。
5、注重应用。加深对概念的理解,培养学生的数学能力
对数学概念的深刻理解,是提高学生解题能力的基础;反之,也只有通过解题,学生才能加深对概念的认识,才能更完整、更深刻地理解和掌握概念的内涵和外延。课本中直接运用概念解题的例子很多,教学中要充分利用。同时,对学生在理解方面易出错误的概念,要设计一些有针对性的题目,通过练习、讲评,使学生对概念的理解更深刻、更透彻。
总之,数学概念教学对整个数学教学起着至关重要的作用,教师在数学概念教学中应努力通过揭示概念的形成、发展、巩固和应用的过程,培养学生的辩证唯物主义观念。完善学生的认知结构,发展学生的思维能力,从而提高数学教学质量
苏科版教材中一般的数学概念,都是通过对实验 现象或某些具体的事例的分析,经过抽象概括而导出的,它有一个形成的过程。它们一般是从几个原始的概念或者公理出发,通过一番推理而扩展成为一系列的定义或者定理.而每一个新出现的概念都依赖着已有的概念来表达,或是由已有的概念推导出来的。例如苏科版九上中的“一元二次方程”的概念,它就是由前置概念推导而来的,它缘自于苏科版八下中“一元一次方程”的概念,而“一元一次方程” 的概念又是以苏科版七下“整式方程、方程”等作为预备概念而得出的。如果对以上某一概念不理解或者一知半解,那得出新的概念或者它的解法就会有一定的难度,因此,在平时的教学中我们一定要注意概念教学的顺序性。正是这些概念的出现的顺序性才将我们的教材有机地串联在一起,形成知识的网络结构图。
针对概念形成的阶段性、发展性和连贯性,我们教师教学中应当注意:在学生对某些预备概念模糊不清的情况下,千万不要急于引入新概念,最好先复习涉及新概念的相关预备概念,尤其是对特别重要的、关键性的预备概念,教师要反复强调,以求得学生较为彻底的理解,方可为新概念的导入作出良好的铺垫。
如在教学《有理数》的概念时,我以前的做法一般是在黑板上例出各种小数,让学生观察它们的特点。这种做法,生搬硬套,效果不是很好。听了讲座后,我试想一下是否可以这样教,先准备好0—9的卡片,让学生上讲台摸出一张,把卡片上的数记在小数点后面,随着摸卡片的学生越多,学生就会发现小数点后面的数越多,教师借止机会归纳:“不错,这样得到的小数,一般是一个无限不循环小数。这种无限不循环小数与我们已经学过的有限小数、无限循环小数不同,是一类新数,我们称它为“无理数”,这就是我们今天要学习的主题。对这种摸奖式的摸球,学生对它有着非常丰富的感性经验.以摸乒乓球得到的数来产生一个具体的位数可以不断延伸的小数,为学生提供了一个可以“感触”的非常直观的无理数模型,使本来遥不可及的数学概念具体地走到学生的面前,赋予无理数一个真实可信的意义,使概念更容易接受、更有意义。
2、注重概念的形成过程。
平时在教学《相反意义的量》时,没有注意知识的探究过程,往往直接生搬硬套得出正负数的概念。能过这次学习后,我想是不是能通过以下改进。教学上先用多媒体演示:“一个人向东走3步,向西走4步;在一个装有糖果的盘子里增加4个糖果,再取走5个糖果等。”然后引导学生观察每一事例在数量上的变化情况,并要学生用语言描述以上3个事例,引导学生概括出其中数量上的变化情况,并板书,再请同学思考:(1)事例中什么在发生变化?(2)怎样变化?(3)变化的意义是否相同?(4)三个不同事例变化的共同之处是什么?经过讨论、交流,学生认识到它们的共同之处在于数量的变化都是相反的。在明确考察的对象是事物数量对应性变化这个问题后,请同学们列举类似的事例以进一步理解概念。然后再任选学生的举例提问:“向南走3步,向北走4步;支出200元,再赢利300元;两句话中两个量变化有何区别。”引导学生关注量所反映的方向,进而引导学生在比较中关注量的相对性质,最后由学生来思考概括所有相关例子中共同的东西,即他们都是相反意义的量,而非“相同意义的量”或“不同意义的量”。
在堂课里,通过学生对相对具体事物的直接观察、感知、分析、比较,进而抽象概括出概念,整个过程引导 学生成为“相反意义的量”概念本质的“发现者”,亲自参与了由表及里的不断深入的理解过程,从而品尝了发现所带来的快乐,实践了抽取实际事物量的关系而舍弃其他一切表面现象的一种思维活动。这样的探究教学活跃了学生的思维,数学变得亲近,学生乐于接受。
3、数学概念的情境性教学
中学数学教材中的许多原始概念,如点、线、面、体、数、常数、变数等等,都是由具体的事物观察然后再抽象出来的。人们长期观察了月亮、太阳、光线、水面等具体事物,逐步形成了有关“圆”、“直线”、“平面”等带有共性的、本质的概念。这些概念是对具体的数和形的感知而形成的表象,然后再由表象经过抽象、概括而形成的。例如:正方形的面积S和它的边长a之间的关系是S=a,边长a可在a>0的范围内任意选取,对于a的每一个确定的值,其面积S都有一个确定的值与它相对应。若抛开这个个性的关系,抽出共性的东西,并加以概括,就可以得到函数的概念:“在某个变化过程中有两个变量x和y,若对于x在某一范围内的任一个取值,y都有惟一一个确定的值与它相对应,那么,我们就把y称之为x的函数。”由此可知,概念是人们对感性材料进行抽象的产物;感性认识是形成概念的基础。如果学生没有感性认识或感性认识不完备时,我们就应该借助于实物、模型、教具、图形或形象的语言进行较为直观的教学,从而使学生从中获得感性认识。对于一些概念(属概念),教师可以直接从已知的概念(种概念)中引入,不必再经过取得感性认识的阶段。如有理数的概念,就可以直接从整数、分数的概念中引入。
4、巩固对概念的理解
旦获得,如不及时巩固,就会被遗忘。巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征,同时,应注重应用概念的变式练习。恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。如“分式”与“整式”的概念教学中,可举出如“x与1/x为例,通过这样的训练,能有效地排除外在形式的干扰,对“分式”与“整式”的理解更加深刻。最后,巩固时还要通过适当的正反例子比较,把所教概念同类似的、相关的概念比较,分清它们的异同点,并注意适用范围,小心隐含“陷阱”,帮助学生从中反省,以激起对知识更为深刻的正面思考,使获得的概念更加精确、稳定和易于迁移。
5、注重应用。加深对概念的理解,培养学生的数学能力
对数学概念的深刻理解,是提高学生解题能力的基础;反之,也只有通过解题,学生才能加深对概念的认识,才能更完整、更深刻地理解和掌握概念的内涵和外延。课本中直接运用概念解题的例子很多,教学中要充分利用。同时,对学生在理解方面易出错误的概念,要设计一些有针对性的题目,通过练习、讲评,使学生对概念的理解更深刻、更透彻。
总之,数学概念教学对整个数学教学起着至关重要的作用,教师在数学概念教学中应努力通过揭示概念的形成、发展、巩固和应用的过程,培养学生的辩证唯物主义观念。完善学生的认知结构,发展学生的思维能力,从而提高数学教学质量