论文部分内容阅读
不同形式的机械损伤对蓖麻种子发芽生长和榨油后的蓖麻油质量影响不同,因此对产生机械损伤的蓖麻种子进行识别分类非常重要。提出了基于卷积神经网络的蓖麻种子损伤分类算法。以种壳缺失、裂纹和完整蓖麻种子(无损伤)的分类为例,构建了蓖麻种子训练集和测试集,搭建2个卷积层(每个卷积层8个卷积核)、2个池化层和1个全连接层(128个节点),实现分类。为提高分类的准确性和实时性,调整网络结构以及优化批量尺寸参数,得到较优的网络结构和批量尺寸;利用上下左右翻转扩充样本,改变优化器、学习率以及正则化系数对该网络进行组合试