论文部分内容阅读
【摘要】小数知识的学习困挠着许多学生,并成为阻碍学生进步的一大难题,多数学生对于小数的概念与计算方法均存在不同程度的错误认识。为了避免并纠正这类错误,必须仔细分析错误的原因。本文就这些错误展开探讨,旨在为新课程改革提供一定的借鉴,同时为小数教学提供合理的教学指导与建议。
【关键词】小数知识;错误认识;教学探讨
前言
有研究表明,小学生在学习小数知识时存在较多的问题,并且在理解小数的意义方面仍存在一定的困难,对小数知识的掌握程度较差[1]。在小数知识方面的错误认识既包括概念题的错误,也包括计算题的错误。本文就此进行相关的分析与探讨,并提出相关的解决策略。
1.常见的小数知识的错误认识
(1)小数概念的认识不当。小学生对小数概念的错误认识包括以下几点。读小数方面,小学生常常精读小数后的数字,如将0.24读成零点二十四;在数线上标小数点或读小数时,易将两格间的单位弄错,例如将0.1与0.3分为十格,不知道两小格间表示的是0.02,同时在理解数线所对应的小数方面存在较大困难;在度量单复名数的转化问题方面,易将小数点的位置放错,如难以将1公尺50公分转化为1.5公尺;容易在序列小数进位方面出错,如0.9进位后变成0.10;在分数与小数的转化方面,易将分子当整数,分母当小数,或将分母当成小数,分子当成小数。如将8/9看作8.9或9.8;在对小数大小进行比较时,错误地认为小数点后面的数字量越多,其值越大。如比较0.8与0.78的大小时,会认为0.78更大;此外部分学生认为除法会使结果变小,乘法能够使结果增大,将用于整数计算的乘除概念用在小数计算上;多数学生不了解分數和小数的稠密性,不知道数与数之间可以被无限分割,在小数的除法计算上,会以大数除以小数这样的思维进行解题。而上述这些错误主要是由于小学生未能准确区分分数与整数的概念所致。
(2)在小数计算方面的错误认识。小数计算包括小数四则运算,在这方面的错误主要有以下几点。在乘除运算上错误放置余数小数点,部分同学在解余数问题时常采用四舍五入法求商;在余数的除法计算中,学生常常出现的问题就是忽视余数小数点;加减法运算时会依据整数的加减法运算原则“向右对齐”进行计算,结果不标小数点或者小数点未对齐。另外,学生虽然对小数的概念有一定的认识,但在小数的互相转化(元、角、分,米、分米、厘米、毫米等)方面仍存在较大的困难[2]。作为小学数学教育的教学重点,小数知识应得到重视。本文就上述问题进行了相关思考,并提出以下几点建议。
2. 避免学生错误认识小数知识的措施
(1)丰富教学方法。教师可以借助计算器对学生进行指导或者由现实生活中的案例导入小数教学。通过指示物以及计算器的相关操作,帮助小学生理解小数知识,提高計算的准确性,采用指示物进行操作能够树立学生的小数化聚能力。例如,在学习序列小数时,运用计算器进行累加,将0.1累加,从而教会学生0.9进位后为1.0,0.99进位后则为0.1。采用视觉表征来提高学生对概念的理解,防止其出现0.9进位后变为0.10的错误认识。
(2)将视觉与听觉相结合进行教学。例如教师采用图卡配对的方式,让学生读出小数,并将正确的读法告知学生,从而提高其小数听说读写方面的能力,及时纠正学生的错误读法。运用等分割的概念对小数知识进行解释,即对比小数的十等分与整数十等分的区别,从而使学生意识到小数点后面的数值不可精读的原因。由于学生在读小数方面的错误多数是因整数读法的影响,因此可以运用反问的方式打破学生的思维定势。当学生出现读法上的错误时,教师可以进行反问,从而加深学生对问题的思考。如学生将65.54读成“六十五点五十四”时,教师则应反问:“大家都认为这是正确的读法吗?”从而引起学生反思。同时教师可进行适当的引导,如:“小数部分的5也在十位上吗?”若学生回答不在,则继续发问“既然不在的话,还能读成五十吗?”从而使学生领悟到不能依照整数的方法来读。
(3)运用数线无限制分割原理来增强学生对小数稠密性这一概念的理解。教师运用直尺导入数线的方式展开教学,让学生用直尺画线段。学生在一边动手一边学习小数知识的过程中,不断理解0.1是经十等分得出的,0.01则是将0.1十等分后得出的。在动手操作的过程中逐渐提高学生对小数知识的学习兴趣,同时能够加深其对数线知识的印象,有利于构建小数知识网络。可见通过数线上的数字位置来掌握小数点知识,能够使学生在反思中认识到小数的大小,并能够运用位置法对小数的大小进行比较。
(4)在进行小数教学时,可以结合45/100 = 4/10加5/100即0.45=0.4加0.05的模式教导位数概念来强化小学多单位概念与位数概念的学习。例如0.48就是4个0.1和8个0.01,其单位就是几个0.1或者0.01。还可以运用小数与分数的连接转换教导位数概念进行教学,如先让学生对分数进行思考,再让其运用不同的方法对分数进行表示,如450/1000=4/10+5/100,之后教师引出 45/100 =4/10加5/100=0.4+0.05 =4×0.1加5×0.01。同样的,在含有整数的小数中也能够使用这种方式开展位数教学,例如5.23 = 5加2/10加3/100,这种将分数与小数互相转换的方式有助于小数位数教学。此外在教学时也可以运用举例的方式,让学生通过观察对比来理解小数转化知识。如在进行元、角、分的相互转化时,教师可先将10张1角与1张1元展示在学生面前,再告知其两者相等,取出1元(10角)中的一份可以用分数表示为1/10元,因此1角=1/10元=0.1元。此方式既能够说明位数概念,又能够增加学生对小数与分数相互转换的认识,从而更好地澄清位数概念。通过质疑辩证数字的摆放位置,促进学生思考各个数字所表示的位数,从而帮助其建立小叔概念。
3. 结语
小学生在小数知识方面的错误主要集中在概念题与计算题,具体包括读法、小数大小比较、小数进位等方面的错误。为了解决这些问题,教师应重视丰富教学方法,借助计算器、卡片等工具,将视觉与听觉结合展开教学。丰富小数的表达方式,并重视对学生进行引导,使学生从多角度理解小数,让学生在反思中准确掌握小数知识。
【参考文献】
[1]苗莉萍.小学生小数错误认识与教学建议[J].数理化学习,2013(07):96.
[2]袁锦红.透过分数看小数——谈小数的意义教学[J].教育教学论坛,2015(22):237-238.
【关键词】小数知识;错误认识;教学探讨
前言
有研究表明,小学生在学习小数知识时存在较多的问题,并且在理解小数的意义方面仍存在一定的困难,对小数知识的掌握程度较差[1]。在小数知识方面的错误认识既包括概念题的错误,也包括计算题的错误。本文就此进行相关的分析与探讨,并提出相关的解决策略。
1.常见的小数知识的错误认识
(1)小数概念的认识不当。小学生对小数概念的错误认识包括以下几点。读小数方面,小学生常常精读小数后的数字,如将0.24读成零点二十四;在数线上标小数点或读小数时,易将两格间的单位弄错,例如将0.1与0.3分为十格,不知道两小格间表示的是0.02,同时在理解数线所对应的小数方面存在较大困难;在度量单复名数的转化问题方面,易将小数点的位置放错,如难以将1公尺50公分转化为1.5公尺;容易在序列小数进位方面出错,如0.9进位后变成0.10;在分数与小数的转化方面,易将分子当整数,分母当小数,或将分母当成小数,分子当成小数。如将8/9看作8.9或9.8;在对小数大小进行比较时,错误地认为小数点后面的数字量越多,其值越大。如比较0.8与0.78的大小时,会认为0.78更大;此外部分学生认为除法会使结果变小,乘法能够使结果增大,将用于整数计算的乘除概念用在小数计算上;多数学生不了解分數和小数的稠密性,不知道数与数之间可以被无限分割,在小数的除法计算上,会以大数除以小数这样的思维进行解题。而上述这些错误主要是由于小学生未能准确区分分数与整数的概念所致。
(2)在小数计算方面的错误认识。小数计算包括小数四则运算,在这方面的错误主要有以下几点。在乘除运算上错误放置余数小数点,部分同学在解余数问题时常采用四舍五入法求商;在余数的除法计算中,学生常常出现的问题就是忽视余数小数点;加减法运算时会依据整数的加减法运算原则“向右对齐”进行计算,结果不标小数点或者小数点未对齐。另外,学生虽然对小数的概念有一定的认识,但在小数的互相转化(元、角、分,米、分米、厘米、毫米等)方面仍存在较大的困难[2]。作为小学数学教育的教学重点,小数知识应得到重视。本文就上述问题进行了相关思考,并提出以下几点建议。
2. 避免学生错误认识小数知识的措施
(1)丰富教学方法。教师可以借助计算器对学生进行指导或者由现实生活中的案例导入小数教学。通过指示物以及计算器的相关操作,帮助小学生理解小数知识,提高計算的准确性,采用指示物进行操作能够树立学生的小数化聚能力。例如,在学习序列小数时,运用计算器进行累加,将0.1累加,从而教会学生0.9进位后为1.0,0.99进位后则为0.1。采用视觉表征来提高学生对概念的理解,防止其出现0.9进位后变为0.10的错误认识。
(2)将视觉与听觉相结合进行教学。例如教师采用图卡配对的方式,让学生读出小数,并将正确的读法告知学生,从而提高其小数听说读写方面的能力,及时纠正学生的错误读法。运用等分割的概念对小数知识进行解释,即对比小数的十等分与整数十等分的区别,从而使学生意识到小数点后面的数值不可精读的原因。由于学生在读小数方面的错误多数是因整数读法的影响,因此可以运用反问的方式打破学生的思维定势。当学生出现读法上的错误时,教师可以进行反问,从而加深学生对问题的思考。如学生将65.54读成“六十五点五十四”时,教师则应反问:“大家都认为这是正确的读法吗?”从而引起学生反思。同时教师可进行适当的引导,如:“小数部分的5也在十位上吗?”若学生回答不在,则继续发问“既然不在的话,还能读成五十吗?”从而使学生领悟到不能依照整数的方法来读。
(3)运用数线无限制分割原理来增强学生对小数稠密性这一概念的理解。教师运用直尺导入数线的方式展开教学,让学生用直尺画线段。学生在一边动手一边学习小数知识的过程中,不断理解0.1是经十等分得出的,0.01则是将0.1十等分后得出的。在动手操作的过程中逐渐提高学生对小数知识的学习兴趣,同时能够加深其对数线知识的印象,有利于构建小数知识网络。可见通过数线上的数字位置来掌握小数点知识,能够使学生在反思中认识到小数的大小,并能够运用位置法对小数的大小进行比较。
(4)在进行小数教学时,可以结合45/100 = 4/10加5/100即0.45=0.4加0.05的模式教导位数概念来强化小学多单位概念与位数概念的学习。例如0.48就是4个0.1和8个0.01,其单位就是几个0.1或者0.01。还可以运用小数与分数的连接转换教导位数概念进行教学,如先让学生对分数进行思考,再让其运用不同的方法对分数进行表示,如450/1000=4/10+5/100,之后教师引出 45/100 =4/10加5/100=0.4+0.05 =4×0.1加5×0.01。同样的,在含有整数的小数中也能够使用这种方式开展位数教学,例如5.23 = 5加2/10加3/100,这种将分数与小数互相转换的方式有助于小数位数教学。此外在教学时也可以运用举例的方式,让学生通过观察对比来理解小数转化知识。如在进行元、角、分的相互转化时,教师可先将10张1角与1张1元展示在学生面前,再告知其两者相等,取出1元(10角)中的一份可以用分数表示为1/10元,因此1角=1/10元=0.1元。此方式既能够说明位数概念,又能够增加学生对小数与分数相互转换的认识,从而更好地澄清位数概念。通过质疑辩证数字的摆放位置,促进学生思考各个数字所表示的位数,从而帮助其建立小叔概念。
3. 结语
小学生在小数知识方面的错误主要集中在概念题与计算题,具体包括读法、小数大小比较、小数进位等方面的错误。为了解决这些问题,教师应重视丰富教学方法,借助计算器、卡片等工具,将视觉与听觉结合展开教学。丰富小数的表达方式,并重视对学生进行引导,使学生从多角度理解小数,让学生在反思中准确掌握小数知识。
【参考文献】
[1]苗莉萍.小学生小数错误认识与教学建议[J].数理化学习,2013(07):96.
[2]袁锦红.透过分数看小数——谈小数的意义教学[J].教育教学论坛,2015(22):237-238.