论文部分内容阅读
针对AdaBoost在使用Haar特征时的局限性,提出了Turbo-Boost算法.该算法经过两轮AdaBoost迭代,先从原始的Haar特征空间中筛选出F维主要特征子空间,再从中训练T>F个弱分类器,以进行最终的表情识别.在CAS-PEAL-R1表情库上的10折交叉验证结果表明,Turbo-Boost算法可显著提升识别性能,对微笑、皱眉、惊讶、张口和闭眼5类表情的总体识别准确率达到了93.6%.此外,该算法的识别速度快,可满足实时识别的需要.