基于广义Sylvester实四元数矩阵方程组的解

来源 :应用数学与计算数学学报 | 被引量 : 0次 | 上传用户:daweihu2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于广义Sylvester实四元数矩阵方程组的解当Ai,Bi和Ci,(i=1,2,3)是被复数矩阵给定的,X,Y,Z和W是可变矩阵.计算耦合广义Sylvester实四元数矩阵方程组的通解W的秩的极值.
其他文献
第五届中俄数值代数及其应用会议(theFifthChina.RussiaConferenceonNumericalAlgebrawithApplications)于2016年7月28日-8月1日在甘肃省张掖市河西学院举办,出席会议的四十余位
主要研究了常循环码的欧氏自对偶码以及Hermitian自对偶码.通过运用离散的傅里叶变换,给出了欧氏自对偶常循环码的存在条件.进一步对常循环码的Hermitian自对偶码进行研究,给出了
基于经典非合作博弈的Nash平衡点问题,结合利他主义的思想,研究了多主从博弈的轻微利他平衡点问题.通过利用Fan-Glicksberg不动点定理,对两个领导者的多主从博弈在轻微利他情
为了更加有效地处理不适定问题,在扩展Kaczmarz算法的思想基础上,提出一种基于Tikhonov正则化的最大残差控制的扩展Kaczmarz算法并证明其收敛性.利用sheep-logan头部图像等进行图像重建实验.数値结果表明,该算法和最大残差控制的扩展Kaczmarz算法(MREK算法)相比,误差更小,图像质量更优.
当最小二乘形式矩阵Pade-型逼近(LSMPTA)中Hankel矩阵呈病态时,其逼近解往往很不稳定.通过引入适当的权因子矩阵,将LSMPTA转化为与之等价且稳定性较高的一种新的LSMPTA,即加权
图的匹配能量定义为该图匹配多项式的零点的绝对值之和.给出了三圈图集合中具有最小匹配能量的图.
证明了凸体的极小Lp(p〉0)表面积的存在唯一性,刻画了凸体的Lp表面积达到极小值时凸体的特征,并建立了关于极小Lp表面积的一个仿射等周不等式.
从两个角度研究了伪连续条件下不确定性礼人非合作博弈的Nash-Slater(NS)均衡的存在性.在不确定博弈中,分别利用伪连续函数的最大值定理以及伪连续下的KyFan不等式,得到了两个伪连
考虑了一类拟线性二阶波方程的柯西问题.在初始函数满足一个不等式的充分条件之下,得到了此方程的全局光滑解的存在性.
研究了满足非正规循环子群的正规化子皆极大的有限半单群,并给出了这类群的结构.