论文部分内容阅读
针对传统基于像素的显著性模型存在的边缘模糊、不适于低对比度环境等问题,提出一种基于双目视觉信息的显著性区域检测方法.采用简单线性迭代聚类(SLIC)方法对图像进行超像素分割,将生成的超像素区域进行合并.通过计算各区域在左右视图的相对移动距离获取物体深度信息,以区域为单位分别计算颜色对比度及深度对比度,进行合成得到区域的显著性值.结果表明,生成的显著性图轮廓清晰,边缘锐利,同等条件下近处及深度变化显著的区域能够获得更高的显著性.该方法符合人类视觉感知特征,适用于移动机器人障碍物检测及场景识别.