【摘 要】
:
[摘 要] 对于初中学生而言,数学教学的有效途径之一,就是让学生大脑当中有丰富的表象. 表象就是学生感知之后在大脑当中留下的形象,形象往往来自体验. 体验有两种情况:一是在生活中的体验,二是在数学学习过程中的体验. 体验学习是相对于学生而言的,绝大多数情况下学生的学习都是面向教师的,因此学生的学与教师的教必然是对应在一起的. 具体的体验教学设计,可以从知识体系角度研究入手,思考学生建构概念需要哪些
其他文献
策划人:萧 玲 忻 叶 策划人语: 时至今日,在江苏小学语文界,恐怕已少有人不知道李吉林。 这个朴实无华的小学教师的名字,如今和诸多美丽的概念连在一起——儿童教育家,“情境教学”、“情境教育”、“情境课程”创始人,全国著名特级教师,中华全国五一劳动奖章获得者(3次),全国劳动模范、先进工作者、三八红旗手、“五讲四美,为人师表”优秀教师…… 不仅如此,在她的名字之上,还附着着一大把头衔—
一、荣辱观教育现状不容乐观 1.以形式代实质 “季风”运动是德育的普遍表现形式,来得急,去得快。甚至有人把荣辱观教育当成一种潮流或者一种政治运动。我曾亲眼见识过某校为宣传“八荣八耻”而制订的教育方案。(一)组织学习:①颁发开展荣辱观教育的通知。②新闻媒介宣传。③班会讨论。④全校考试。(二)开展活动:①宣誓。②黑板报评比。③印发倡议书。④开主题队会。⑤征文。⑥德育标兵评选。宗旨:使“八荣八耻
由《江苏教育》理事会和江苏省中小学教学研究室联合举办的为期3天的“江苏省2007‘杏坛杯’优质课评比活动”于5月25日下午在宜兴市落下帷幕。这次优质课评比活动增设了小学英语赛课项目,从而为全省实验小学英语教学的交流与研讨提供了一个很好的平台,也为一批小学优秀英语教师的脱颖而出提供了一个很好的舞台。来自苏南、苏中和苏北的7名小学英语教师参加了赛课,200多名小学英语教师参加了观摩活动。 从总体上来
[摘 要] 本文结合“视图”这一案例阐述中小学数学教学应如何整体定位,给出相应针对性教学策略,从而使中小学教师在各部分知识的教学活动更具针对性、有效性. [关键词] 视图;整体定位;分段把握;教学衔接;数学教学 中小学数学教学衔接问题是数学教学改革中常被提起的一个话题,然而各学段数学教学之间存在着一种严重脱节的现象,这种被忽略的割裂状态,致使很多学生进入新的学段之后不能适应,成绩明显下降. 新
[摘 要] 复习课是对已经学过的知识再加工、再深化的过程,其最佳的效果是融知识技能、思想方法、创新能力于一体,让学生复习知识、理清脉络、凸显思想方法. 本文从轴对称复习课自然展开,分为四个过程,抓住共性特征,从而让学生在学习知识的前提下,掌握整体结构,提升能力. [关键词] 轴对称;复习课;通式通法 众所周知,复习课是对学过的知识再加工、再深化的过程. 数学复习课最佳的效果是融知识技能、思想方
[摘 要] 在复习课的教学过程中,问题可以启发学生对已学知识与技能、规律与方法进行自发思考,还可以帮助学生在思维短路的情况下指引思维的方向, 启发学生思维生长,更能将学生的思维碎片通过问题串联成片. [关键词] 问题;思维;复习;智慧 “问题串”复习法是初三数学复习课中应用较为普遍的复习法,是教师以问题引领学生回顾旧知、提升能力的复习法,它的优势是课堂容量大,问题具有针对性,能调动学生主动思考
某校地处茶乡,每年春秋季节,组织三年级以上学生参加20学时左右采茶制茶劳动,这成为该校劳动与技术教育的传统项目,多次受到市、县教育部门的表彰。可是,多年来,一些家长反复举报该校说:学校让学生采茶制茶,占用宝贵的学习时间,耽误了孩子的学习;让学生采茶制茶为学校创收是违规行为,学生在学校就是上学、读书;自己的孩子在家很少做体力劳动,学校组织到校外采茶制茶,还有时间、任务限制,是强迫学生做事…… 该校
[摘 要] 几何最值问题以求解相关最值为表象,以研究几何点的位置关系为本质目的,解题时可以合理地构建隐形圆,利用几何圆的相关性质来求解. 本文以一道几何最值问题为例,探讨解题方法,与同行交流学习. [关键词] 几何最值;隐形圆;构建;性质 考题呈现 题目:图1所示的四边形ABCD中,AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12. (1)在图a中,点M位于四边形的边AD上,
圆锥曲线的定义 (1)你知道椭圆、双曲线、抛物线的第一定义吗? 作答:______________________ (2)椭圆、双曲线、抛物线的第二定义你掌握了吗? 作答:______________________ (1)平面内与两个定点F1,F2的距离之和等于常数(大于F1F2)的点的轨迹叫做椭圆;与两个定点F1,F2的距离之差的绝对值等于常数(小于F1F2)的点的轨迹叫做双曲线;与
[摘 要] 数学核心素养指在数学学习过程中要培养的必要的综合能力. 它是在学生学习数学的过程中形成的,它不僅包含数学知识技能,还包含学生的学习能力和态度. “自学·议论·引导”教学法倾力提升学生的自学能力,帮助学生自主学习、创造性地学习,发展学生学力. “自学·议论·引导”在发展初中生数学核心素养上有重要的指导意义. [关键词] “自学·议论·引导”;数学核心素养;数学基础知识;数学基本能力