论文部分内容阅读
我们知道:整数可以分为两部分,一部分为奇数,另一部分为偶数.我们用“(?)”代表全体奇数的类,用“(?)”代表全体偶数的类,由于奇数+奇数=偶数,偶数+偶数=偶数,奇数+偶数=奇数,所以有 .为了简便,分别用“0”和“1”来代替“(?)”和“(?)” 在杨辉三角形中,除最外面的两条“1”外,其余各数都等于它肩上两个数之和.杨辉三角形的第一排只有一个数“1”,第二排两个数都是“ 1”,显然第三排中间
We know that integers can be divided into two parts, one is an odd number and the other is an even number. We use “(?)” to represent an odd-numbered class, and “(?)” to represent an even-numbered class, because odd+odd=even , even + even = even, odd + even = odd, so there. For the sake of simplicity, use “0” and “1” instead of “(?)” and “(?)” In the Yang Hui triangle, except the outermost In the case of two “1”s, the remaining numbers are equal to the sum of the two numbers on their shoulders. The first row of Yang Hui’s triangle has only one number “1”, and the second row has two numbers “1”, obviously the third row. intermediate