数列问题的解题策略

来源 :高考进行时·高三数学 | 被引量 : 0次 | 上传用户:clgg1976
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  数列是高考的必考内容,在中学教材中既具有独立性,又具有较强的综合性,是初等数学与高等数学的一个重要衔接点。等差数列与等比数列是最重要也是最基本的数列模型,主要考查利用方程思想求解a1,d,q,Sn,n,an等一些基本元素,利用等差(比)数列的性质进行推理运算。而数列的通项是一切数列问题的核心,是数列定义在数与式上的完美体现,是解决数列综合问题的突破口,近年来根据数列的递推公式求解其通项公式的问题在高考中也频频出现。当然,数列主观题的考查还常与函数、不等式、三角、解析几何等知识相结合,注重问题的综合性与新颖性。
  一、 考纲要求
  数列内容主要考点包括三个方面:一是数列的概念;二是等差数列;三是等比数列。其中数列的概念为A级要求,等差数列和等比数列均为C级要求。根据考纲要求,数列单元的复习中,要注意以等差数列和等比数列这两个重要的数列模型为主线,以数列的通项与求和这两个基本问题为抓手,突出基础,注重方法,强化综合,努力提高阅读理解能力、形式运算能力、推理论证能力和综合运用所学知识分析问题、解决问题的能力。
  二、 难点疑点
  难点1 从数列的通项公式an=f(n)(n∈N*)的形式,明确函数与数列的联系与区别,掌握利用函数知识研究数列问题的思路和方法是数列学习的难点之一;
  难点2 数列是研究与正整数有关的计算和推理问题,解决数列问题时,要特别注意定义域是正整数这一关键,在此基础上所研究的数列的最值,单调性以及与不等式恒成立相关的问题是数列学习的难点之二;
  难点3 由数列的递推关系求解数列的通项公式的常用方法是构造法,即通过式子的灵活变形构造等差数列或等比数列,继而求解通项公式,如何正确合理地构造是数列学习的难点之三。
  疑点1 已知数列的前n项和求an时,易忽视n=1的情况,直接用Sn-Sn-1表示an,解题时应注意an,Sn的关系是分段的,即an=S1,n=1
  Sn-Sn-1,n≥2;
  疑点2 数列的前3项与数列是等差(比)数列的关系是数列学习的又一个疑点。已知一个数列的前3项成等差(比)数列,不足以说明数列是等差(比)数列,必须根据定义证明;若一个等差(比)数列给出含参数的通项公式或求和公式时,可以通过前3项成等差(比)确定参数;而要判断一个数列不是等差(比)数列,只需说明数列的前3项不成等差(比)即可,正所谓“成事不足败事有余”;
  疑点3 研究数列时通常渗透几种思想,即特殊到一般的归纳思想,两类重要数列解题时的类比思想,由数列的递推公式求解通项公式时的化归与转化思想,解题时要合理运用。
  三、 经典练习回顾
  1. 已知数列{an}中,前n项和Sn=n2+2n,则通项公式an= .
  2. 若等比数列{an}满足a2a4=12,则a1a23a5= .
  3. 设公比为q(q>0)的等比数列{an}的前n项和为Sn,若S2=3a2+2,S4=3a4+2,则q= .
  4. 已知数列{an}对于任意p,q∈N*,有ap+aq=ap+q,若a2=4,则a100= .
  5. 已知数列{an}满足递推关系式an+1=2an+2n-1(n∈N*),且an+λ2n为等差数列,则λ= .
  6. 现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.
  综上所述,存在λ=-1,使得对任意n∈N*,都有cn+1>cn成立.
  点拨 对于给出数列的递推公式求通项公式的问题,往往要构造新数列,并能证明其是等差数列或等比数列,进而求原数列的通项公式。遇到Sn要注意利用Sn与an的关系将其转化为an,再研究其具体性质。遇到(-1)n型的问题要注意分n为奇数与偶数两种情况进行讨论,本题的易错点就是忘掉对n奇偶性的讨论而致误。
其他文献
一、 填空题(本大题共14小题,每小题5分,共70分,把答案填在答题卡的相应位置)  1. 设全集U=R,集合A={x|x≥2},B={-1,0,1,2,3},则(   瘙 綂 UA)∩B=.  2. 已知复数z满足(1+i)z=-i,则的模为.  (第4题)  3. 已知1log2a+1log3a=2,则a=.  4. 右边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则
期刊
考点例析  1. 对等差、等比数列基本概念及运算的考查  本部分内容在高考中大都以填空题的形式出现,题目难度不大,属于中、低档题,主要涉及到数列的基本概念及基本的公式运算问题。    【例1】 设等比数列{an}的公比q=2,前n项和为Sn,则S4a2= .      解析 解法一:利用公式S4=a1(1-q4)1-q,a2=a1q,则S4a2=a1
期刊
甲:老朋友,你知道什么是推理吗?  甲:你说的是数学里的合情推理和演绎推理吧!那可是一门高深的学问呐。  乙:谈不上什么高深!不就是这么类比一下,这么推理一下,不过我觉得非常好玩。  甲:好玩?数学可是一门严谨的科学啊!  乙:话虽这么讲,可我觉得还是好玩。我问你,什么是数学?  甲:这谁都知道,数学不就是研究现实世界里空间形式和数量关系的一门科学嘛!  乙:可依我的推理,数学=文学+音乐  甲:
期刊
一、 填空题(本大题共14小题,每小题5分,共70分,把答案填在答题卡的相应位置)  (第2题)  1. 过点A(0,1)且垂直于y轴的直线方程为.  2. 如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有对.  3. 已知直线l过点P(2,-1),且与直线2x+3y-4=0平行,则直线l的方程为.  4. 下列命题中  ①三点确定一个平面;  ②若一条直线垂直与平面
期刊
高考的号角已经吹响了,同学们的弦绷得更紧了。家长的期望,老师的嘱咐,如何在这有限的时间内化这些鼓励为分数呢?这是每一个考生和家长都关心的问题。其实,这并不困难。我们很多考生在分析自己的试卷时都会发现,丢分最多的往往并不是那些自己不会的,而是由于“粗心”,说明确了就是解题不规范和计算失误所造成的。所以,我们认为无论是哪个层面上的学生在这一段时间内都特别要注重解题的规范性,不要因为“会而不对”而丢分。
期刊
生产与生活中充满着数学应用,其中就有不少是数列问题,如树枝的分杈规律、兔子的繁殖问题、梯子横档的长度关系、货款购物、生产增长率、浓度匹配,养老保险,圆钢堆垒等等。本文以时下的社会热点问题,略举数例来看数列在生产与生活中的应用。    一、 历史名题问题      【背景材料】 1. 19世纪法国数学家刘卡在一次国际会议中提出这样的一个问题:每天中午,某航运公司有一只轮船(记为L)从巴黎的
期刊
推理与证明是数学的基础思维过程,也是人们日常学习和生活中常常使用的一种思维方式,推理一般包括合情推理与演绎推理,在问题的解决过程中,合情推理具有猜测结论和发现结论、探索和提供思路的作用,有利于培养探究性思维能力和创造性思维能力。  一、 考纲要求  根据《2012年江苏高考数学科考试说明》及《江苏省普通高中数学课程标准教学要求》,合情推理与演绎推理要求为B级,分析法、综合法及反证法要求A级,这里的
期刊
数学应用Shu Xue Ying Yong 数学应用Shu Xue Ying Yong 数学应用题侧重于阅读分析和实际问题数学建模能力的考查,现教材教学起点低,各模块在概念引入、数学表示等方面都恰当地融入或体现了数学知识的生活背景。将生活问题中包含的数量关系转化为数学关系,再利用数学知识解决问题,是应用问题的一般思路。  一、 与函数、方程(组)、不等式(组)有关的题型  【背景材料】 环境污染
期刊
直线的方程与圆的方程是江苏高考的C级要求,从近几年江苏高考题来看,常考的知识点有:直线方程、圆的方程及直线与圆的位置关系。复习时,要理解直线倾斜角与斜率的概念,掌握直线方程的几种形式及各自的适用范围;能灵活选择直线方程的形式求直线的方程,会根据直线方程判定直线的平行或垂直。此外,还要能进行圆的一般方程与标准方程的互化,根据条件选择方程的形式求圆的方程。对于直线与圆的位置关系要给予足够的重视,特别是
期刊
数列是高中数学的重要内容,也是中学数学联系实际的主要渠道之一。数列与数、式、函数、方程、不等式、三角函数、解析几何的关系十分密切。数列中的递推思想、函数思想、分类讨论思想以及数列求和、求通项的各种方法和技巧在中学数学中都有着十分重要的地位,因此,围绕数列可命制综合性较强的试题。历年来,数列一直是高考的重点和热点,有时甚至还是难点。  每年高考与数列内容有关的试题,既有一条单纯关于数列内容的填空题,
期刊