论文部分内容阅读
最优脑外科过程是一种训练后网络剪枝算法,计算的复杂度非常高,通过把剪枝条件以惩罚项的形式纳入神经网络的训练目标函数中,把正则化方法的结构优化蕴涵于网络训练过程,构建面向最优脑外科过程的计算模型,实现网络训练过程和最优脑外科过程并行剪枝,既保持了最优脑外科过程的准确性,又具有正则化的高效性,提高了神经网络模型的泛化性能。该模型在理论上具有收敛性,其有效性和可行性通过给出的Leven-berg-Marquardt方案仿真实验也得到了说明。