论文部分内容阅读
ISODATA算法能自动地进行类的分裂和合并,但这种硬分类算法没有充分考虑图像本身的特点和人类的视觉特性,其分类效果一般差于模糊聚类算法。而大多数模糊识别方法都需要设置类别数目,有其自身的缺点,而直觉模糊则弥补了传统模糊理论不足。结合直觉模糊和ISODATA优点,将与隶属度和非隶属度相关的判定函数作为分类度量,提出了一种基于直觉模糊的ISODATA算法,结合实际改进了隶属度函数,以区域为待分类样本以提高算法速度,将其应用到图像分割,经实验证明了算法的有效性。