论文部分内容阅读
为了提高车牌自动识别系统的速度和准确度,采用适应性较强的十三特征提取法进行车牌字符的特征提取,将提取的特征向量作为网络的输入;在对网络进行训练时,选用具有一个承接层作为一步延迟算子的动态建模性质比较好的Elman递归神经网络.此网络在权值更新时不仅考虑了当前的梯度方向,而且还考虑了前一时刻的梯度方向,从而降低了网络性能对参数调整的敏感性,有效地抑制了局部极小值的出现.最后与BP网络训练的结果进行对比,结果表明Elman递归神经网络在识别速度和准确度方面都更具优越性.