论文部分内容阅读
摘要:转化化归思想是解决数学问题的一种基本思想方法。本文对高中数学中常用的化归转化的基本形式进行分析,得出一些高中数学中常用的化归与转化原则和方法。
关键词:化归;方法;转化思想。
在处理数学问题时,我们常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题,通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”。
化归转化思想是中学数学中最重要的解题思想,在教学中注意对学生进行转化与化归思想的培养,可提高学生的思维水平,能够更深刻地理解数学,灵活地运用数学,从而培养他们的创新能力。
一、化归与转化应遵循的基本原则
第一,熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。
第二,简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。众所周知,复杂与简单是相对而言的,以二次方程为例,相对于一次方程来说,它是复杂形式;而相对于高次方程来说,它又是简单形式了。
第三,和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。
第四,直观化原则:将比较抽象的问题转化为比较直观的问题来解决。
第五,正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
二、化归转化的方法
化归转化方法有分割法、换元法 、映射法、恒等变形法、函数法、数形结合法等。
第一,分割法。在几何教学中,常常对复杂的几何图形或几何体进行分割,使之成为简单的几何图形或几何体的组合。这是几何中实现化归转化的常用方法。
第二,换元法。解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元变形法用处很多,化简代数式如使用换元法可以简化计算过程,分解因式时使用换元法可以减少项数,便于发现关系,解方程时有些分式方程,指数方程和对数方程通过换元可以变成整式方程。有些高次方程通过换元可以达到降次的目的,有些无理方程通过换元可以去掉或减少根号。证明条件等式时,使用换元容易发现已知条件和待证等式之间的联系。通过换元引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。总之换元变形法用处十分广泛,学生应该熟练掌握在解题实践中灵活地、创造性地去运用。
第三,映射法。学习了集合与映射后用映射来定义函数,而把反函数的概念建立在一一映射的基础上,而确定反函数y=f (x)的映射是一个从原函数值域集合到定义域集合上的一个一一映射。映射法是实现化归的一种重要方法,如由于建立了直角坐标系,使平面上的点与有序实数对,曲线与方程建立了对应关系,几何问题转化为代数问题。此外复数与复平面上的点、向量也建立起一一对应关系,把向量引进了代数,使复数的代表运算可用向量的几何运算来进行。
第四,恒等变形法。无论在代数还是三角教材中,恒等变形都占有十分重要的位置,特别是在求解代数方程和三角方程时,利用恒等变形以实现未知向已知的化归,使我们能比较容易求得方程的解。
第五,函数法。几何问题、方程问题、不等式问题和某些代数问题可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
总之,熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好中学数学的金钥匙。为了实施有效的化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,又可以变换问题的外部形式,既可以从代数的角度去认识问题,又可以从几何的角度去解决问题。
要注意化归转化的原则及合理性,同一个问题往往用不同的转化方式可以转化为不同类型的问题。
第六,数形结合法。
三、总结提炼
第一,熟练、扎实地掌握基础知识、基本技能和基本方法是化归与转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化与化归的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好高中数学的金钥匙。
第二,为了实施有效的转化与化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,又可以变换问题的外部形式,既可以从代数的角度去认识问题,又可以从几何的角度去解决问题。教学中培养学生化归与转化的思想,强化化归与转化的意识,对提高学生分析问题、解决问题以及创造性思维的能力是十分重要的。
关键词:化归;方法;转化思想。
在处理数学问题时,我们常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题,通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”。
化归转化思想是中学数学中最重要的解题思想,在教学中注意对学生进行转化与化归思想的培养,可提高学生的思维水平,能够更深刻地理解数学,灵活地运用数学,从而培养他们的创新能力。
一、化归与转化应遵循的基本原则
第一,熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。
第二,简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。众所周知,复杂与简单是相对而言的,以二次方程为例,相对于一次方程来说,它是复杂形式;而相对于高次方程来说,它又是简单形式了。
第三,和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。
第四,直观化原则:将比较抽象的问题转化为比较直观的问题来解决。
第五,正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
二、化归转化的方法
化归转化方法有分割法、换元法 、映射法、恒等变形法、函数法、数形结合法等。
第一,分割法。在几何教学中,常常对复杂的几何图形或几何体进行分割,使之成为简单的几何图形或几何体的组合。这是几何中实现化归转化的常用方法。
第二,换元法。解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元变形法用处很多,化简代数式如使用换元法可以简化计算过程,分解因式时使用换元法可以减少项数,便于发现关系,解方程时有些分式方程,指数方程和对数方程通过换元可以变成整式方程。有些高次方程通过换元可以达到降次的目的,有些无理方程通过换元可以去掉或减少根号。证明条件等式时,使用换元容易发现已知条件和待证等式之间的联系。通过换元引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。总之换元变形法用处十分广泛,学生应该熟练掌握在解题实践中灵活地、创造性地去运用。
第三,映射法。学习了集合与映射后用映射来定义函数,而把反函数的概念建立在一一映射的基础上,而确定反函数y=f (x)的映射是一个从原函数值域集合到定义域集合上的一个一一映射。映射法是实现化归的一种重要方法,如由于建立了直角坐标系,使平面上的点与有序实数对,曲线与方程建立了对应关系,几何问题转化为代数问题。此外复数与复平面上的点、向量也建立起一一对应关系,把向量引进了代数,使复数的代表运算可用向量的几何运算来进行。
第四,恒等变形法。无论在代数还是三角教材中,恒等变形都占有十分重要的位置,特别是在求解代数方程和三角方程时,利用恒等变形以实现未知向已知的化归,使我们能比较容易求得方程的解。
第五,函数法。几何问题、方程问题、不等式问题和某些代数问题可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
总之,熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好中学数学的金钥匙。为了实施有效的化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,又可以变换问题的外部形式,既可以从代数的角度去认识问题,又可以从几何的角度去解决问题。
要注意化归转化的原则及合理性,同一个问题往往用不同的转化方式可以转化为不同类型的问题。
第六,数形结合法。
三、总结提炼
第一,熟练、扎实地掌握基础知识、基本技能和基本方法是化归与转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化与化归的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好高中数学的金钥匙。
第二,为了实施有效的转化与化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,又可以变换问题的外部形式,既可以从代数的角度去认识问题,又可以从几何的角度去解决问题。教学中培养学生化归与转化的思想,强化化归与转化的意识,对提高学生分析问题、解决问题以及创造性思维的能力是十分重要的。