论文部分内容阅读
目标跟踪是计算机视觉的关键技术,但快速运动所导致的目标运动模糊会影响跟踪的精度.提出融合高斯混合模型和深度学习的目标跟踪算法,利用高斯混合模型对目标视频进行建模,在卷积神经网络中提取浅层和深层的图像特征,将两个特征的响应值融合后实现跟踪目标的定位.首先,根据高斯混合模型建立样本数据集,利用概率密度函数筛选数据,依据正态分布获得对应的高斯分量;其次,在深度学习框架下对高斯混合后获得的样本数据提取浅层和深层特征;最后,将提取的浅层与深层特征响应值进行融合,并更新目标模型,实现目标跟踪定位.该算法在VOT