在数学教学方面怎样指导学生掌握正确的学习方法

来源 :数学通报 | 被引量 : 0次 | 上传用户:sysu_allan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
“怎样才能学好数学”是每个青年学生所最关心和最迫切需要了解的一个問題。当然学生想要学好数学,首先要对数学学习有明确的学习目的和正确的学习观点。此外,便关系到学习方法了。从經驗可知,有的学生能掌握較好的学习方法,他的学习效果也就較好。有的学生在学习方法方面不得其門而入,結果便事倍功半。由此可見,改进学习方法的确也是提高学习貭量的关鍵之一。因此,作教师的人不仅要传授給学生教材內容,而且也应該指导学生如何学习。下面仅就个人体会,对怎样指导学生掌握正确的学习数学的方法这个問題提出一些肤浅見解,请大家指正。一、遵循正确的学习途徑 (一)循序渐进,从具体到抽象,由低級到高級。数學是一門系統性很强的科学,因此在学习过程中,要按步就班,循序漸进,由浅到深,由近到远,由簡到繁,由易到难。好象爬山一样,要由山根下出发,一步一步地登上去。也好象建楼一样,要从平地上开始,一层一层地筑起来。学习数学非但不能越級躐等,而且也不容許在某些章节中存在知識上的缺陷和理解方面的偏 “How can we learn mathematics well” is a question that every young student cares most and urgently needs to understand. Of course, if students want to learn mathematics, they must first have a clear learning purpose and a correct learning perspective. In addition, it is related to learning methods. From experience, it can be known that some students can master better learning methods and his learning results are better. Some students are not allowed to enter the door in the learning method, and the result is less effective. This shows that improving learning methods is indeed one of the keys to improving learning. Therefore, the teacher is not only to teach students the content of the teaching materials, but also to instruct the students how to learn. The following only on the personal experience, on how to guide students to master the correct way to learn mathematics this question put some superficial insights, please correct me. First, follow the correct approach to learning (a) step by step, from the concrete to abstract, from low to high. Mathematics is a very systematic science. Therefore, in the learning process, we must follow the steps step by step, step by step, from shallow to deep, from near to far, from simple to complex, from easy to difficult. It is like climbing a mountain. It starts from the foot of the mountain and climbs step by step. It is also like building a building, starting from the ground, built up layer by layer. Learning mathematics is not limited to leapfrogging, etc., and it also does not allow the existence of knowledge defects and understanding in certain chapters.
其他文献
感知、表象、抽象概括──培养学生的逻辑思维能力例谈贺兰县教研室李怀安表象是一种普遍的心理现象.“人们感知过的某一事物,其形象常常会在头脑中以痕迹的形式保留下来,以后这
这篇短文的目的,一方面固然是介紹“压縮映象原理”这个在分析里著名的不动点方法,另一方面,也想通过这个較为典型的例子来說明在数学研究里如何运用抽象、概括的方法,从一
一、上半年钢铁行业运行特点上半年,受钢材价格上涨影响,钢铁企业经营状况普遍实现好转,扭转了全行业亏损的局面,成绩来之不易。总结上半年运行特点主要有以下几个方面:1.钢
“有理数”、“无理数”,这两个数学名词,好像是和我们朝夕相处的老友一样,经常在数学书刊上露面。 可是,老友的名称,却让我们叫歪了。 原来,有理数译自rational number。ra
形如ax~2+bx+c的代数式,叫做x的二次三项式。某些数字系数的二次三项式的因式分解,运用观察法,即十字相乘法,即可完成。例如:分解8x~2+27x+9的因式,我们在草稿纸上写 An al
今年以来,河南省有色金属工业摆脱了近几年下滑局面,经济运行总体向好,确保了国内第一方阵的地位。究其原因,得益于近年来大规模的结构调整与技术改造,以及企业生存发展能力
本文围绕武器装备试验的任务流程,分析了科研试验单位质量工作面临的新形势新环境,提出了持续改进质量工作和优化质量体系的思路和对策,为装备试验鉴定追求持续、卓越发展提
集合是德国数学家康托儿在十九世纪末提出的概念,近代数学就建立在集合论的基础之上。1965年,美国加州大学教授查德(L.A.Zadeh)发表了题为《模糊集合》的著名论文,第一次提
设给定了一个数列{u_n}: u_1,u_2,u_3,…,u_n,…求它的前n项的和 S_n=sum from k=1 to n u_k=u_1+u_2+u_3+…+u_k+…+u_n 通常也把它叫做求数列sum from k=1 to n u_k的和,
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.