论文部分内容阅读
解圆锥曲线问题常用以下方法:
1.定义法
(1)椭圆有两种定义.第一定义中,r1+r2=2a.第二定义中,r1=ed1,r2=ed2.
(2)双曲线有两种定义.第一定义中,|r1-r2|=2a,当r1>r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将焦半径与“点到准线距离”互相转化.
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明.
2.韦达定理法
因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.
3.设而不求法
解析几何的运算中,常设一些量而并不解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”.设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x1,y1),B(x2,y2),弦AB中点为M(x0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法.
4.數形结合法
解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质.
5.参数法
(1)点参数
利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解.如x轴上一动点P,常设P(t,0);直线x-2y+1=0上一动点P.除设P(x1,y1)外,也可直接设P(2y1-1,y1).
(2)斜率为参数
当直线过某一定点P(x0,y0)时,常设此直线为y-y0=k(x-x0),即以k为参数,再按命题要求依次列式求解等.
(3)角参数
当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题.
6.代入法
这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P1,P2求(或求证)目标Q”,方法1是将条件P1代入条件P2,方法2可将条件P2代入条件P1,方法3可将目标Q以待定的形式进行假设,代入P1,P2,这就是待定法.不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法.
(作者单位:河南省正阳县第二高级中学 463600)
1.定义法
(1)椭圆有两种定义.第一定义中,r1+r2=2a.第二定义中,r1=ed1,r2=ed2.
(2)双曲线有两种定义.第一定义中,|r1-r2|=2a,当r1>r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将焦半径与“点到准线距离”互相转化.
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明.
2.韦达定理法
因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.
3.设而不求法
解析几何的运算中,常设一些量而并不解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”.设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x1,y1),B(x2,y2),弦AB中点为M(x0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法.
4.數形结合法
解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质.
5.参数法
(1)点参数
利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解.如x轴上一动点P,常设P(t,0);直线x-2y+1=0上一动点P.除设P(x1,y1)外,也可直接设P(2y1-1,y1).
(2)斜率为参数
当直线过某一定点P(x0,y0)时,常设此直线为y-y0=k(x-x0),即以k为参数,再按命题要求依次列式求解等.
(3)角参数
当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题.
6.代入法
这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P1,P2求(或求证)目标Q”,方法1是将条件P1代入条件P2,方法2可将条件P2代入条件P1,方法3可将目标Q以待定的形式进行假设,代入P1,P2,这就是待定法.不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法.
(作者单位:河南省正阳县第二高级中学 463600)