论文部分内容阅读
所谓“归位”是指教与学各司其职,不占位、不越位、不离位,符合新课程的教学理念,发挥各自在课堂中的重要作用。教与学是教学中两个辩证统一的活动体,随着新课程改革的逐渐深入,教与学两者的关系越来越受到教育者的重视。在教学中教与学各有各的位置,若教“越位”了,就会上成一堂课 “专制课”,若学“离位”了就会成为一堂“自由课”,因此,处理好教与学的关系,使两者各就各位,共建和谐的课堂氛围,就成了每位教师的教学追求。
1 教的“归位”是自主学习的关键
“自主学习”强调学生是学习的主体,强调学生要通过能动的创造性的学习活动,实现自主性发展。但“自主学习”不是对学生放任自流,它重视学生的“学”,也重视教师的“导”,强调教师的科学指导是前提条件和主导,强调教师要充分发挥主导作用,处理好“教”与“学”的关系,启发并指导学生掌握一定的条件,不断促成学生由不知到知的转化。因此,课堂上“教”必须致力于“导”,服务于“学”。教不越位,是实现课堂学习自主的关键。怎样才能体现教师的引导既到位、又不越位呢?我认为,教师应在情境、设问、点拨等环节上下功夫,在“精”字上做文章。
1.1 在情境创设上要精妙
德国教育学家第多斯惠曾说:“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。斯金娜认为:“认识兴趣则是促使教学——认识活动积极的某种独特'震中”。兴趣是学习的不竭动力,是学习成功的秘诀。因此,在课堂教学中,教师要根据学生的实际和年龄特征、知识经验、能力水平、认知规律等因素,抓住学习思维活动的热点和焦点,通过各种途径创设与教学有关的使学生感到真实、新奇、有趣的教学情境,激发学生的学习兴趣,使其产生跃跃欲试的探索意识。情境创设,一是要“精”,要根据所学内容,或创设一个引人入胜的情境,或布迷设障等,但不能冗长。二是要“妙”,开课引题,要具有延伸性。
例如,教学“能化成有限小数的分数特征”时,教师先布置家庭作业,让学生任意写分数,进行笔算,得出分数值,并记录下计算的结果。上课时,师生打擂台,学生报分数,教师判断结果。哪些分数能化成有限小数,哪些分数不能化成有限小数。由于教师对学生所报的分数都能做出迅速准确的判断,学生感到非常惊讶。此时,教师说:“我有一个秘密,它能够迅速准确地判断出哪些分数能化成有限小数,大家想学吗?”学生兴趣盎然,跃跃欲试,从而为参与学习提供了最佳心理准备。
1.2 在问题设计上要精当
学贵有思,思贵有疑。思维自惊奇和疑问开始,学生有了问题才会去探索,只有主动探索才会有创造。因此,课堂教学中,教师要精心设计几道有思维价值、能引发学生深入思考的问题,同时提供与之相匹配的学习材料,让学生自学、自探,然后得出结论。教师重在授法,学习贵在领悟,学法渗透于教法之中。
例如,“长方形面积的计算”一课,开始,教师首先提出问题;“长方形的面积与它的什么有关系?”开门见山,直奔主题。在学生出现种种猜测后,借助多媒体电脑动画演示,使学生直观感知:长方形的宽不变,长越长,面积越大;长方形的长不变,宽越长,面积也越大。从而得出结论:长方形的面积与它的长和宽有关系。“长方形的面积与它的长和宽究竟有怎样的关系呢?”第二个问题提出后,马上放手,引导学生用边长是1厘米的小正方形摆各种不同的长方形,并把所摆长方形的长、宽、面积记录到表格中。在大量具体数据展现在学生面前,并让学生充分表述自己摆长方形的过程之后,教师提出第三个问题“观察表格,回想自己摆长方形的过程,你们发现了什么?”组织讨论。有的学生借助具体数据,很快得出了“长方形面积=长×宽”的结论;有的学生结合自己摆长方形的过程,经过深入思考,慢慢悟出:摆长方形时,横着一排摆几个小正方形,长方形的长就是几厘米;竖着摆这样的几排,长方形的宽就是几;每排小正方形的个数×排数=小正方形的总个数,因此,长×宽=长方形的面积。
以上教学,教师通过精心设问,逐步把学生的思维引向深入,学生开展了积极的智慧活动,不仅学到了知识,而且数学思维能力得到了切实地培养。
1.3 在引导上要精巧
学资有思,教重在引。学生在认知活动中,出现思维障碍而无法排除时,教师要充分运用引导、点拨这一教学手段来激活学生的思维,使之达到自主参与、自觉发现、自我完善、自行掌握知识的目的。教学中引导一是要“准”,要在学生思维的堵塞处,拐弯处予以指导、疏理;二是要“巧”,在学有困难学生茫然不知所措时,在中等生“跳起来摘果子”力度不够时,在优等生渴求能创造性地发挥其聪明才智时予以点拨,使其茅塞顿开。
例如,“能化成有限小数的分数特征”一课,通过师生打擂台,激发起学生的参与兴趣后,师问;“有的分数能化成有限小数,有的分数不能化成有限小数,这里面蕴含着一个规律,这个规律是在分子中呢,还是在分母中?”当学生观察到1/4和1/3分子相同,而1/4能化成有限小数,1/3却不能时,一致认为规律在分母中。这时,师又问:“能化成有限小数的分数的分母有什么特征呢?”组织学生讨论:有的说分母是奇数,但1/9却不能化成有限小数,有的说分母是偶数,但1/5也能化成有限小数……当学生屡屡碰壁,思维出现“中断”“偏离”时,教师不再让学生漫无目的地争论,而是适时地点拨指导,启发学生:“你们试着把分数的分母分解质因数,看能不能发现规律?”一句话,使学生一下便找到了思维的突破口,发现了特征:“一个分数,如果分母中除了2和5以外不含有其他质因数,这个分数就能化成有限小数”。正当学生心满意足之际,教师又出示7/35和5/35,先让学生判断,再组织试验,从而又激起矛盾:为什么分母同是35,化成的小数却有两种不同的结果呢?通过观察分析,最后让学生自己认识到所发现规律的前面,还得补充个前提“最简分数”。可见,课堂上的灵活点拨是一种艺术,如果将课堂教学的全过程比作画龙的话,那么,教者根据教学内容的精巧点拨就是点睛了。课堂上教师适时适度的点拨,能促使学生更好地理解、掌握数学知识,实现自主学习。
2 学的“归位”是自主学习的根本
认知心理派代表人物布鲁纳认为:“知识的获得是一个主动的过程,学习者不应是信息的被动接受者,而应该是知识获取过程的主动参与者。”苏霍姆林斯基也曾说过:“在人的心灵深处,有一种根深蒂固的需要,希望自己是一个发现者、研究者、探索者。”这说明每个学生都有主动学习的愿望和需要。在课堂教学中,教师要努力发展学生的主动性,要让学生自己“动”起来,使他们的所有感官(眼、耳、口、脑、手)都充分发挥作用,形成一个“全频道接收、多功能协调、立体化渗透、快节奏反馈”的信息网络,使学习的各个环节都得到优化,训练处处到位。学要到位,是实现课堂学习自主的根本。
2.1 观察归位
观察是一种有目的、有计划、比较持久的知觉,是人们认识事物、获取知识的重要途径。科学家的研究表明;“人们获取信息有60~80%来自于视觉,只有15%~20%来自于听觉。”因此,数学学习必须重视数学观察力的培养。观察一要明确的目的,二要按一定的顺序,三要与思维和想象相结合,善于比较,从而提高观察的效果。例如,三年级教学“积的变化规律”,先让学生口答算式结果,教师板书:
16×2=32
16×20=320
16×200=3200
16×2000=32000
然后引导观察:仔细观察上面四个算式,你发现了什么?(一个因数不变,另一个因数变了,积也变了)把第二个算式和第一个算式相比,第二个因数是怎么变的?积呢?你还能从哪些算式的比较中得出这个结论?如果把第三个算式和第一个算式比,你又能发现什么?第四个算式与第一个算式比呢?这样从上向下观察,你能发现什么规律“?如果从下向上观察呢”?从而很顺利地得出积的变化规律。
以上教学从整体到部分,由部分又回到整体,从上向下、从下向上、由表及里地引导学生观察,既教给学生观察的基本方法,又留给学生一定的自主观察的余地和时间,不仅培养了学生的观察能力,还使学生享受到发现的愉快和成功的喜悦,激发其认知内驱力,提高了学习的积极性。
2.2 操作归位
数学是思维的体操,而思维是由动作开始的。切断了动作和思维的联系,思维就不能得到发展。因此,教学中教师要根据教学内容和学生的认知规律,积极创造条件,让学生操作学具,促使其顺利到达认知的彼岸。
例如,教学“有余数的除法”时,教师共安排了三次操作;第一次是引入阶段,用8根小棒摆正方形,再用8根小棒摆三角形,目的是让学生在操作中知道分物体或摆图形往往有两种结果,一种是刚好分完,一种是分后还有多余,从而引出“余数”概念,揭示课题“有余数的除法”。第二次是圈点子,15个点子,3个1份,有几份?4个1份,有几份?还多几个?5个1份、6个1份、7个1份呢?操作的目的是让学生进一步认识“余数”和“有余数的除法”,弄清商和余数各表示什么。第三次操作是例题教学,“20个乒乓球,每6个装1盒,可装几盒?还剩几个?”师生讨论后列式:20÷6=3(盒)……2(个)。然后学生独立操作列式:21个乒乓球可以装几盒?还剩几个?“22个、23个、24个呢?这里的主要目的是通过操作引导学生观察余数与除数的关系,以便得出“余数都比除数小”的结论。接着问:“如果余数与除数一样大,行吗?为什么?余数比除数大呢?你发现了什么规律?”学生在操作、交流、讨论的基础上发现,如果余数大于或等于除数,乒乓球还可再装一盒,从而轻松得出结论:“余数一定要比除数小。”假如没有学生的操作参与,学生对这个结论的理解就不可能深刻。这三次操作,为突出重点和突破难点而设计,目的明确,并且组织指导到位,充分调动了学生学习的积极性,发挥了学生的主观能动性。
2.3 表达归位
教学是师生之间、学生之间多向交流的活动。“听”与“说”是交流的主要形式。学生通过听,既对教师传授的知识进行吸收和理解,又对同学发表的意见进行评判和认识。学生通过说,一方面把自己对知识的领悟情况反馈给教师、为教师随机调整教学提供依据,以提高教学实效;另一方面,学生在“说”中互相交流,共同加深了对知识的理解。由此可见,数学课堂教学中,一定要重视学生的“听”与“说”,把对学生的“听”“说”训练放到应有的位置上来,这是小学数学教学本身的需要。
此外,重视学生的“说”,让学生表达到位,也有利于学生思维能力的发展。古人云:“有为心声,言乃说,心乃思。”语言是思维的外壳,是思维的物质形式。知识的内化与相应的智力活动都必须伴随语言的内化而内化。语言的逐步掌握和不断发展,推动着他的思维内容日益丰富,调节他的思维活动逐步完善从而不断提高他的思维能力,因此,教学中要通过有意识的语言训练,来培养学生的表达能力,发展学生的思维能力。常用的做法有:让学生说操作的过程,说课本上插图的图意,叙述应用题的解题思路,说出概念的本质属性及公式、法则的推导过程等。实践证明,通过有序的语言训练,由培养学生语言的逻辑性来培养学生思维的逻辑性,能有效地促进学生思维活动的开展,有利于其初步的逻辑思维能力的发展和良好的思维品质的形成。
2.4 演练归位
练习是课堂教学的重要组成部分,是教学过程中学生实践的主要形式,也是学生学好数学的一个重要环节。心理学研究表明;知识、技能、能力存在着如下的转化关系:知识→技能→能力。要使学生所学的数学知识转化为技能,并使技能化为技巧,必须充分发挥练习这个环节的作用。因此在练习设计时要注意这样几个方面:首先组织练习要及时。第二,练习份量要适中。第三,练习方式要多样。第四,要面向全体,兼顾差异。
总之,让教与学各就各位,使教不“越位”,学不“离位”,是对教和学辩证关系的生动概括,是深化课堂教学改革,切实推行素质教育,全面提高教育教学质量的重要保证。
1 教的“归位”是自主学习的关键
“自主学习”强调学生是学习的主体,强调学生要通过能动的创造性的学习活动,实现自主性发展。但“自主学习”不是对学生放任自流,它重视学生的“学”,也重视教师的“导”,强调教师的科学指导是前提条件和主导,强调教师要充分发挥主导作用,处理好“教”与“学”的关系,启发并指导学生掌握一定的条件,不断促成学生由不知到知的转化。因此,课堂上“教”必须致力于“导”,服务于“学”。教不越位,是实现课堂学习自主的关键。怎样才能体现教师的引导既到位、又不越位呢?我认为,教师应在情境、设问、点拨等环节上下功夫,在“精”字上做文章。
1.1 在情境创设上要精妙
德国教育学家第多斯惠曾说:“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。斯金娜认为:“认识兴趣则是促使教学——认识活动积极的某种独特'震中”。兴趣是学习的不竭动力,是学习成功的秘诀。因此,在课堂教学中,教师要根据学生的实际和年龄特征、知识经验、能力水平、认知规律等因素,抓住学习思维活动的热点和焦点,通过各种途径创设与教学有关的使学生感到真实、新奇、有趣的教学情境,激发学生的学习兴趣,使其产生跃跃欲试的探索意识。情境创设,一是要“精”,要根据所学内容,或创设一个引人入胜的情境,或布迷设障等,但不能冗长。二是要“妙”,开课引题,要具有延伸性。
例如,教学“能化成有限小数的分数特征”时,教师先布置家庭作业,让学生任意写分数,进行笔算,得出分数值,并记录下计算的结果。上课时,师生打擂台,学生报分数,教师判断结果。哪些分数能化成有限小数,哪些分数不能化成有限小数。由于教师对学生所报的分数都能做出迅速准确的判断,学生感到非常惊讶。此时,教师说:“我有一个秘密,它能够迅速准确地判断出哪些分数能化成有限小数,大家想学吗?”学生兴趣盎然,跃跃欲试,从而为参与学习提供了最佳心理准备。
1.2 在问题设计上要精当
学贵有思,思贵有疑。思维自惊奇和疑问开始,学生有了问题才会去探索,只有主动探索才会有创造。因此,课堂教学中,教师要精心设计几道有思维价值、能引发学生深入思考的问题,同时提供与之相匹配的学习材料,让学生自学、自探,然后得出结论。教师重在授法,学习贵在领悟,学法渗透于教法之中。
例如,“长方形面积的计算”一课,开始,教师首先提出问题;“长方形的面积与它的什么有关系?”开门见山,直奔主题。在学生出现种种猜测后,借助多媒体电脑动画演示,使学生直观感知:长方形的宽不变,长越长,面积越大;长方形的长不变,宽越长,面积也越大。从而得出结论:长方形的面积与它的长和宽有关系。“长方形的面积与它的长和宽究竟有怎样的关系呢?”第二个问题提出后,马上放手,引导学生用边长是1厘米的小正方形摆各种不同的长方形,并把所摆长方形的长、宽、面积记录到表格中。在大量具体数据展现在学生面前,并让学生充分表述自己摆长方形的过程之后,教师提出第三个问题“观察表格,回想自己摆长方形的过程,你们发现了什么?”组织讨论。有的学生借助具体数据,很快得出了“长方形面积=长×宽”的结论;有的学生结合自己摆长方形的过程,经过深入思考,慢慢悟出:摆长方形时,横着一排摆几个小正方形,长方形的长就是几厘米;竖着摆这样的几排,长方形的宽就是几;每排小正方形的个数×排数=小正方形的总个数,因此,长×宽=长方形的面积。
以上教学,教师通过精心设问,逐步把学生的思维引向深入,学生开展了积极的智慧活动,不仅学到了知识,而且数学思维能力得到了切实地培养。
1.3 在引导上要精巧
学资有思,教重在引。学生在认知活动中,出现思维障碍而无法排除时,教师要充分运用引导、点拨这一教学手段来激活学生的思维,使之达到自主参与、自觉发现、自我完善、自行掌握知识的目的。教学中引导一是要“准”,要在学生思维的堵塞处,拐弯处予以指导、疏理;二是要“巧”,在学有困难学生茫然不知所措时,在中等生“跳起来摘果子”力度不够时,在优等生渴求能创造性地发挥其聪明才智时予以点拨,使其茅塞顿开。
例如,“能化成有限小数的分数特征”一课,通过师生打擂台,激发起学生的参与兴趣后,师问;“有的分数能化成有限小数,有的分数不能化成有限小数,这里面蕴含着一个规律,这个规律是在分子中呢,还是在分母中?”当学生观察到1/4和1/3分子相同,而1/4能化成有限小数,1/3却不能时,一致认为规律在分母中。这时,师又问:“能化成有限小数的分数的分母有什么特征呢?”组织学生讨论:有的说分母是奇数,但1/9却不能化成有限小数,有的说分母是偶数,但1/5也能化成有限小数……当学生屡屡碰壁,思维出现“中断”“偏离”时,教师不再让学生漫无目的地争论,而是适时地点拨指导,启发学生:“你们试着把分数的分母分解质因数,看能不能发现规律?”一句话,使学生一下便找到了思维的突破口,发现了特征:“一个分数,如果分母中除了2和5以外不含有其他质因数,这个分数就能化成有限小数”。正当学生心满意足之际,教师又出示7/35和5/35,先让学生判断,再组织试验,从而又激起矛盾:为什么分母同是35,化成的小数却有两种不同的结果呢?通过观察分析,最后让学生自己认识到所发现规律的前面,还得补充个前提“最简分数”。可见,课堂上的灵活点拨是一种艺术,如果将课堂教学的全过程比作画龙的话,那么,教者根据教学内容的精巧点拨就是点睛了。课堂上教师适时适度的点拨,能促使学生更好地理解、掌握数学知识,实现自主学习。
2 学的“归位”是自主学习的根本
认知心理派代表人物布鲁纳认为:“知识的获得是一个主动的过程,学习者不应是信息的被动接受者,而应该是知识获取过程的主动参与者。”苏霍姆林斯基也曾说过:“在人的心灵深处,有一种根深蒂固的需要,希望自己是一个发现者、研究者、探索者。”这说明每个学生都有主动学习的愿望和需要。在课堂教学中,教师要努力发展学生的主动性,要让学生自己“动”起来,使他们的所有感官(眼、耳、口、脑、手)都充分发挥作用,形成一个“全频道接收、多功能协调、立体化渗透、快节奏反馈”的信息网络,使学习的各个环节都得到优化,训练处处到位。学要到位,是实现课堂学习自主的根本。
2.1 观察归位
观察是一种有目的、有计划、比较持久的知觉,是人们认识事物、获取知识的重要途径。科学家的研究表明;“人们获取信息有60~80%来自于视觉,只有15%~20%来自于听觉。”因此,数学学习必须重视数学观察力的培养。观察一要明确的目的,二要按一定的顺序,三要与思维和想象相结合,善于比较,从而提高观察的效果。例如,三年级教学“积的变化规律”,先让学生口答算式结果,教师板书:
16×2=32
16×20=320
16×200=3200
16×2000=32000
然后引导观察:仔细观察上面四个算式,你发现了什么?(一个因数不变,另一个因数变了,积也变了)把第二个算式和第一个算式相比,第二个因数是怎么变的?积呢?你还能从哪些算式的比较中得出这个结论?如果把第三个算式和第一个算式比,你又能发现什么?第四个算式与第一个算式比呢?这样从上向下观察,你能发现什么规律“?如果从下向上观察呢”?从而很顺利地得出积的变化规律。
以上教学从整体到部分,由部分又回到整体,从上向下、从下向上、由表及里地引导学生观察,既教给学生观察的基本方法,又留给学生一定的自主观察的余地和时间,不仅培养了学生的观察能力,还使学生享受到发现的愉快和成功的喜悦,激发其认知内驱力,提高了学习的积极性。
2.2 操作归位
数学是思维的体操,而思维是由动作开始的。切断了动作和思维的联系,思维就不能得到发展。因此,教学中教师要根据教学内容和学生的认知规律,积极创造条件,让学生操作学具,促使其顺利到达认知的彼岸。
例如,教学“有余数的除法”时,教师共安排了三次操作;第一次是引入阶段,用8根小棒摆正方形,再用8根小棒摆三角形,目的是让学生在操作中知道分物体或摆图形往往有两种结果,一种是刚好分完,一种是分后还有多余,从而引出“余数”概念,揭示课题“有余数的除法”。第二次是圈点子,15个点子,3个1份,有几份?4个1份,有几份?还多几个?5个1份、6个1份、7个1份呢?操作的目的是让学生进一步认识“余数”和“有余数的除法”,弄清商和余数各表示什么。第三次操作是例题教学,“20个乒乓球,每6个装1盒,可装几盒?还剩几个?”师生讨论后列式:20÷6=3(盒)……2(个)。然后学生独立操作列式:21个乒乓球可以装几盒?还剩几个?“22个、23个、24个呢?这里的主要目的是通过操作引导学生观察余数与除数的关系,以便得出“余数都比除数小”的结论。接着问:“如果余数与除数一样大,行吗?为什么?余数比除数大呢?你发现了什么规律?”学生在操作、交流、讨论的基础上发现,如果余数大于或等于除数,乒乓球还可再装一盒,从而轻松得出结论:“余数一定要比除数小。”假如没有学生的操作参与,学生对这个结论的理解就不可能深刻。这三次操作,为突出重点和突破难点而设计,目的明确,并且组织指导到位,充分调动了学生学习的积极性,发挥了学生的主观能动性。
2.3 表达归位
教学是师生之间、学生之间多向交流的活动。“听”与“说”是交流的主要形式。学生通过听,既对教师传授的知识进行吸收和理解,又对同学发表的意见进行评判和认识。学生通过说,一方面把自己对知识的领悟情况反馈给教师、为教师随机调整教学提供依据,以提高教学实效;另一方面,学生在“说”中互相交流,共同加深了对知识的理解。由此可见,数学课堂教学中,一定要重视学生的“听”与“说”,把对学生的“听”“说”训练放到应有的位置上来,这是小学数学教学本身的需要。
此外,重视学生的“说”,让学生表达到位,也有利于学生思维能力的发展。古人云:“有为心声,言乃说,心乃思。”语言是思维的外壳,是思维的物质形式。知识的内化与相应的智力活动都必须伴随语言的内化而内化。语言的逐步掌握和不断发展,推动着他的思维内容日益丰富,调节他的思维活动逐步完善从而不断提高他的思维能力,因此,教学中要通过有意识的语言训练,来培养学生的表达能力,发展学生的思维能力。常用的做法有:让学生说操作的过程,说课本上插图的图意,叙述应用题的解题思路,说出概念的本质属性及公式、法则的推导过程等。实践证明,通过有序的语言训练,由培养学生语言的逻辑性来培养学生思维的逻辑性,能有效地促进学生思维活动的开展,有利于其初步的逻辑思维能力的发展和良好的思维品质的形成。
2.4 演练归位
练习是课堂教学的重要组成部分,是教学过程中学生实践的主要形式,也是学生学好数学的一个重要环节。心理学研究表明;知识、技能、能力存在着如下的转化关系:知识→技能→能力。要使学生所学的数学知识转化为技能,并使技能化为技巧,必须充分发挥练习这个环节的作用。因此在练习设计时要注意这样几个方面:首先组织练习要及时。第二,练习份量要适中。第三,练习方式要多样。第四,要面向全体,兼顾差异。
总之,让教与学各就各位,使教不“越位”,学不“离位”,是对教和学辩证关系的生动概括,是深化课堂教学改革,切实推行素质教育,全面提高教育教学质量的重要保证。