论文部分内容阅读
在数学问题中。有相当数量的问题若直接证明难以人手,因此,常采用间接法证明。其中,反证法是间接证明的一种基本方法。反证法的基本思想是:若肯定命题的条件而否定其结论,就会导致矛盾。具体地说,反证法不直接证明命题“若p则g”,而是先肯定命题的条件p,并否定命题的结论q,然后通过合理的逻辑推理,而得到矛盾,从而断定原来的结论是正确的。使用反证法时要注意:当遇到“否定性”、“唯一性”、“无限性”、“至多”、“至少”等类型命题时,常用反证法。注意反证法的基本思路及一般步骤:①反证法的理论依据,②什么样的命题可采用反证法,③反证法的“反设”,④反证法中的“归谬”。在反证法中探求的矛盾常见的有:(1)与已知条件矛盾;(2)与定理、公理矛盾;(3)与已知具有的或成立的性质矛盾。