论文部分内容阅读
The volcanic rocks of the Xiong’er Group occur widely in the southern part of the North China Craton, which mark the beginning of the cover in the southern part of the North China Craton. The age of the volcanic rocks is thus crucial to understand the tectonic regime and evolu- tionary history of the North China Craton in the Proterozoic age. Zircons from five volcanic rocks and intrusions were dated by U-Pb SHRIMP method. The results indicate that the Xiong’er Group formed in 1.80—1.75 Ga of Paleo-Pro- terozoic. Since the Xiong’er Group formed earlier than the Changcheng System, the earliest rocks in the Changcheng System is therefore assumed to be formed in 1.75 Ga. A thermal-tectonic event of ca. 1.84 Ga is indicated by new zircon U-Pb SHRIMP ages in the southern part of the North China Craton. The volcanic rocks of the Xiong’er Group thus represent the initial magmatism of the Pa- leo-Proterozoic breakup of the North China Craton. Nu- merous inherited zircons in the volcanic rocks mainly formed in ~2.20 Ga, indicating that the source magma of the volcanic rocks may be derived from the ~2.20 Ga crust, or from a mantle magma with significant contamination of the ~2.20 Ga crust.
The volcanic rocks of the Xiong’er Group occur widely in the southern part of the North China Craton, which mark the beginning of the cover in the southern part of the North China Craton. The age of the volcanic rocks is thus crucial to understand the tectonic regime and evolu- tionary history of the North China Craton in the Proterozoic age. Zircons from five volcanic rocks and intrusions were dated by U-Pb SHRIMP method. The results indicate that the Xiong’er Group formed in 1.80-1.75 Ga of Paleo -Pro-terozoic. Since the Xiong’er Group formed earlier than the Changcheng System, the earliest rocks in the Changcheng System was therefore assumed to be formed 1.75 Ga. A thermal-tectonic event of ca. 1.84 Ga is indicated by new zircon U-Pb SHRIMP ages in the southern part of the North China Craton. The volcanic rocks of the Xiong’er Group thus represent the initial magmatism of the Paleo-Proterozoic breakup of the North China Craton. N u-merous inherited zircons in the volcanic rocks mainly formed in ~ 2.20 Ga, indicating that the source magma of the volcanic rocks may be derived from the ~ 2.20 Ga crust, or from a mantle magma with significant contamination of ~ 2.20 Ga crust.