离散数学的代数系统理论在密码学中的应用

来源 :课程教育研究·新教师教学 | 被引量 : 0次 | 上传用户:sihuifuran
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  【摘要】本文分析了离散数学中的代数系统理论与密码学课程之间的关系,阐述了离散数学在密码学领域的实际应用。
  【关键词】离散数学 ; 密码学 ; 教学
  【中图分类号】G64 【文献标识码】B 【文章编号】2095-3089(2015)7-0250-02
  一、引言
  离散数学是计算机专业的基础课,为计算机专业的后续课程提供专业的数学理论基础。该课程可以全方位培养学生的抽象思维能力和解决实际问题的能力,为学生学习其它专业课程建立数学的思想。
  该课程包括数理逻辑、集合论、代数系统、图论四个大部分。每个部分与数据结构,数据库,人工智能,数字逻辑,编译原理等课程都密切相关。
  本文我们将阐述离散数学中的代数系统理论部分与密码学的相关性,并且分析该理论在密码学领域的若干应用。
  二、代数系统理论与密码学的相关性及在密码学的应用
  离散数学中的代数系统理论包括代数系统的一些基本概念、半群与独异点、群、环与域、格与布尔代数。代数系统与密码学联系非常紧密,为密码学提供非常重要的数学基础。现将代数系统理论在密码学中的若干应用列举如下:
  密码学中,凯撒密码是一种最简单且最广为人知的加密技术,是一种简单的基于替换原理的加密技术。凯撒密码将明文中的所有字母都在字母表上向后(或向前)按照一个固定数目进行偏移后被替换成密文,其中固定数目的偏移量为加解密密钥。例如当偏移量为3,字母A将被替换成D,B变成E,其它的字母按此规则类推。在代数系统理论中群是一种典型的代数系统,具有封闭性、可结合性、含单位元以及每个元素都有逆元等性质。从本质上来说凯撒密码就是一个特殊的群,是建立在26个字母之上,字母与密钥进行运算的剩余模群。通过对于群理论的学习可以帮助学生更好的理解凯撒密码的本质。
  在密码学中有一个重要的公钥加密算法的RSA,该算法是目前最安全的公钥加密算法,可以抵抗目前已知的绝大多数密码攻击。数论中的费马小定理为RSA提供数学上的安全性保证。通过对于费马小定理的原理和正确性的理解可以更好的理解RSA算法的安全性,在实际中更好地使用RSA算法。
  在密码学中的椭圆曲线密码是基于椭圆曲线的一种公钥密码算法,该密码安全性基于椭圆曲线离散对数的困难性上,是一个有限域上椭圆曲线的阿贝尔群。对于在代数系统理论中群和域的概念以及性质进行认真学习和理解可以用于椭圆曲线密码的学习。
  三、离散数学在计算机其他学科中的应用
  离散数学在计算机研究中的作用越来越大,计算机科学中普遍采用离散数学中的一些基本概念、基本思想、基本方法,使得计算机科学越趋完善与成熟。离散数学在计算机科学和技术中有着广泛应用,除了在上述提到的领域中发挥了重要作用外,在其他领域也有着重要的应用,如离散数学中的数理逻辑部分在计算机硬件设计中的应用尤为突出,数字逻辑作为计算机科学的一个重要理论,在很大程度上起源于离散数学的数理逻辑中的命题与逻辑演算。利用命题中各关联词的运算规律把由高低电平表示的各信号之间的运算与二进制数之间的运算联系起来,使得我们可以用数学的方法来解决电路设计问题,使得整个设计过程变得更加直观,更加系统化。集合论在计算机科学中也有广泛的应用,它为数据结构和算法分析奠定了数学基础,也为许多问题从算法角度如何加以解决提供了进行抽象和描述的一些重要方法,在软件工程和数据库中也会用到。代数结构是关于运算或计算规则的学问,在计算机科学中,代数方法被广泛应用于许多分支学科,如可计算性与计算复杂性、形式语言与自动机、密码学、网络与通信理论、程序理论和形式语义学等,格与布尔代数理论成为电子计算机硬件设计和通讯系统设计中的重要工具,图论对开关理论与逻辑设计、计算机制图、操作系统、程序设计语言的编译系统以及信息的组织与检索起重要作用,其平面图、树的研究对集成电路的布线、网络线路的铺设、网絡信息流量的分析等的实用价值显而易见。
  四、结束语
  通过上面的分析,我们可以发现离散数学中的代数系统理论在密码学领域的作用非常重要,离散数学不仅是计算机技术迅猛发展的支撑学科,更是提高学生逻辑思维能力、创造性思维能力以及形式化表述能力的动力源,离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到分布式系统,无不与离散数学密切相关。在现代计算机科学中,如果不了解离散数学的基本内容,则在计算机科学中就寸步难行了。
  参考文献
  [1]任勋益.离散数学与计算机安全结合改进教学[J].软件导刊,2009(12)
  [2]刘宏月,张行进等.面向信息安全学科的离散数学教学探究[J].计算机教育,2012(15):23-26
  [3]屈婉玲,耿素云等.离散数学[M].北京:高等教育出版社,2008
  [4]丁宝康主编.数据库原理[M].经济科学出版社,2000
  [5]冯登国,裴定一编著.密码学导引[M].科学出版社,1999
  [6]魏献祝主编.高等代数[M].华东师范大学出版社,1997
  [7]华东师范大学数学系编.概率论与数理统计教程[M].高等教育出版社,1983
  作者简介:刘文(1982.8-),女,湖南湘潭人,博士,汉族,中国传媒大学,副教授,主要研究领域信息安全。
其他文献
【摘要】本文首先讲述了新课程理念下信息技术所面临的问题,又根据新课程教学过程中的实践经验,提出几点教学方法的相关建议,旨在对新课程理念下高中信息技术的教学方法提供技术参考。  【关键词】高中信息技术 ; 新课程 ; 教学方法  【中图分类号】G633.67 【文献标识码】B 【文章编号】2095-3089(2015)7-0244-01  一、高中信息技术的教学在新课程理念下所要面临的问题  高中新
目的:探究全面健康教育干预对维持性血液透析患者自我护理能力的影响.方法:选取2014年9月-2016年9月在本院接受治疗的56例维持性血液透析患者作为研究对象,将患者按照随机原
例题教学是数学教学的重要组成部分,是数学学习活动的重要环节,通过例题教学,能展示思维过程,启迪创新意识,形成知识技能;同时还能渗透数学思想,培养数学精神,提高学生的学习兴趣和学习信心。在教学实践中,有的教师不重视例题教学,主要表现在以下几个方面:  ① 丢弃课本例题。  ② 没有充分展示思维过程。  ③ 缺少反思和归纳。  本人根据自己多年的教学实践,结合北师大版实验教材八年级下册第四章第五节相似
肿瘤的发病率越来越高,严重威胁着人们的健康,揭示肿瘤的发病机制已是迫在眉睫。Zeste基因增强子人类同源物2(Ezh2)作为多梳抑制复合物2(polycomb repressive complex,PRC2)
1996年3月14~15日在北京召开冶金部“八五”国家科技攻关总结大会,出席会议的有:国家计委、国家科委、财政部、机械部、冶金部的领导,以及中国工程院、冶金矿山企业、科研院所、
【摘要】Wilson定理的重要性,不仅表现在对二次同余的研究有帮助,而且它给出一个正整数是素数的充要条件,因而决定一个正整数是否为素数的问题已经完全解决。该文将给出Wilson定理的两种证法,并应用 Wilson定理介绍一个素数公式,并证明其成立。  【关键词】素数 ; Wilson定理 ; 多项式 ; 素数公式  【中图分类号】G64 【文献标识码】B 【文章编号】2095-3089(2015)
【摘要】俗话说:“兴趣是最好的老师”。特别是一年级的孩子,注意力不易集中,意志力比较薄弱,往往凭兴趣去认识事物,感兴趣的会全神贯注,不感兴趣的则心不在焉。如果教学课堂设计得不合理,教學方法死板,不重趣味性教学,学生将提不起劲头,缺乏学习的动力。在教学实践中,我深深地体会到,激发学生的学习兴趣,是促进学生学好数学的必要保证。学生对学习有无兴趣,与教师的启发、诱导有很大关系,这就要求我们“寓教于乐”,
护理学经历了从简单的清洁卫生护理,到现在的以人的健康为中心的护理的发展历程.随着社会的发展和人民生活水平的提高,人们对护理工作的期待越来越高,护理美学便应运而生.护
目的:对重症监护室中心静脉置管的护理方法进行研究分析.方法:选取我院2015年5月至2016年5月收治入重症监护室的82例应用中心静脉置管患者的资料进行回顾性分析.结果:所有患
【摘要】课后作业是教师用来巩固学生知识,提高学生能力的主要手段。但在新的时代背景下,高中数学作业的设计应该受到改革,只有做到优化,才能提高课后作业的有效性。  【关键词】高中数学 ; 作业设计 ; 实践思考  【中图分类号】G633.6 【文献标识码】B 【文章编号】2095-3089(2015)7-0247-01  一、引言  长期以来,作业都是教师用于巩固教学成果、检验学生学习成效的主要手段。