具有临界增长及Hardy项的半线性椭圆方程多解的存在性

来源 :数学物理学报:A辑 | 被引量 : 0次 | 上传用户:wsdemon8911
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该文研究如下问题{-△u+u/|x|^2=|u|^2*-2u+g(x),x∈R^N,u(x)→0(|x|→∞),u∈D^1,2(R^N)(0.1)多解的存在性,这里g(x)≥0,g(x)≠0,g(x)∈L^2N/N+2(R-N).证明了:存在常数C(适当小),如果‖g‖L2N/N+2(R^N))≤C,则上述问题至少有两个解存在.
其他文献
该文主要给出了有关τ-可测算子及‖·‖_2的Young不等式及Heinz型不等式的逆向不等式,并给出了有关τ-可测算子的arithmetic平均,geometric平均及Heinz型平均的奇异值不
定义了螺形函数的新子族,即ρ次椭圆星形函数和ρ次椭圆形β型螺形函数,并将这些定义推广到多复变数空间中,得到推广的Roper-Suffridge算子在不同空间不同区域上保持ρ次椭圆
得到了亚纯函数族的一个拟正规定则,并给出了它在值分布理论中的一个应用。
该文考虑一类具对数源项波动方程的初边值问题.利用Galerkin方法结合对数Sobolev不等式和对数Gronwall不等式,对所有初始值得到了整体解的存在性.通过引入位势井,给出了解在
该文考察源自半导体材料科学中的双极非等熵Euler-Poisson方程组.运用对称子的技巧与时空混合导数迭代方法,研究了三维空间环上的周期问题.在初值为一个非常数平衡解的小摄动
引入了QCLkR空间和QCLkS空间的概念,以局部自反原理为工具证明了QCLkR空间和QCLkS空间的对偶关系.利用切片给出了QCLkR空间和QCLkS空间的特征刻画,并讨论了它们与其它凸性和
主要讨论一类非线性项在无穷远处渐近|u|^p-2u增长的p-Laplace方程的Dirichlet边值问题,利用环绕定理证明了当λ1 ≤ λ<λ2(λ1为算子(-△p,W1,p0(Ω))第一特征值)时,方程存在非平凡