基于机器学习的SDN网络流量预测与部署策略

来源 :计算机工程 | 被引量 : 0次 | 上传用户:bisha1007
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对由于网络流量的复杂多变而导致的软件定义网络(SDN)架构控制平面的负载不均问题,提出一种基于隐马尔科夫优化的最大熵网络流量预测和控制器预部署PPME模型。根据协议种类对SDN流量进行分类,利用已捕获的历史数据流,采用最大熵算法预测未来数据流的分布,生成控制平面中各类控制器的预部署方案,并加入隐马尔科夫链对预测方案的时效性进行优化。实验结果表明,相比于SVR模型与GBRT模型,该模型具有更高的预测精度,且生成的预部署方案能够适应复杂SDN环境中的动态变化,减少了由于突发事件而导致的负载不均和控制器迁移,
其他文献
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们羽 制作:陈恬’#陈川个美食 Back to yield
人类蛋白图像分类的目的是识别蛋白质细胞器中的细胞核浆、核膜等定位标签。针对蛋白质分类数据集大、多标签类别不平衡以及类间差异小等问题,结合CSPPNet与集成学习,提出一种人类蛋白质图像分类方法。该方法构建了粗细结合的CSPPNet模型,且将该模型前几层卷积生成的特征图加入空间金字塔池化层,并与模型后期卷积生成的特征图相结合,同时利用图片的整体特征和局部特征自动检测图片差异,以提高细粒度图像分类问题
为解决当前主流图像超分辨率重建算法对低分辨率图像中细节信息利用不够充分的问题,提出一种基于多尺度反向投影的图像超分辨率重建算法。使用多个不同尺度的卷积核从浅层特征提取层中提取出不同维度的特征信息,输入到反向投影模块后,交替使用升采样和降采样来优化高分辨率和低分辨率图像的投影误差,同时运用残差学习的思想将升采样和降采样阶段提取到的特征使用级联的方式进行连接,从而提升图像的重建效果。实验结果表明,在S
<正> 学习党代表会议文件的一次讨论会上,一位支部书记不无感慨地联系实际说:现在无论啥都是厂长说了算,思想工作部门一点权威也没了.有位车间主任颇不以为然:思想工作部门又
传统的否定选择过程需要将全部检测器与测试数据进行匹配以排除异常数据,该匹配过程需要花费大量时间,导致检测效率过低。为此,提出一种基于检测器集层次聚类的否定选择算法
针对遥感图像飞机检测中存在的背景复杂和目标尺度变化大等问题,提出基于深度神经网络的遥感图像飞机目标检测模型DC-DNN。利用图像底层特征制作像素级标签完成全卷积神经网络(FCN)模型训练,将FCN模型与DBSCAN密度聚类算法相结合选取飞机目标的自适应候选区域,并基于VGG-16网络提取候选区域高层特征以获取飞机目标检测框,同时通过检测框抑制算法剔除重叠框和误检框,得到最终的飞机目标检测结果。实验
<正> 漆酶是一种多酚氧化酶,其功能是催化多酚(或某些氨类物质)发生氧化反应。早在1965年,Revlou,Inc.等人就利用这一性质生产出一种染发色剂,色剂中的多酚或芳香胺类化合物
期刊
<正> 物价改革措施逐步出台后,不少企业由于缺乏足够的思想准备和应变能力,都感到有点猝不及防,纷纷寻求摆脱价改困境的出路。这已成为当今企业界的热门话题,直接关系到我国
在我国社会和经济发展过程中,人们日常生活和工作中对电力能源需求不断增加,我国已经加大电力行业的投入和建设,2018年中国全社会用电量为68449亿kWh,全国全口径发电量为6994
三维动画技术经过多年的发展已经取得了一定的成果,被广泛运用于多个领域,尤其是建筑设计领域,但在室内设计中的运用还有待提高。文章首先确定了三维动画技术的含义,明确了三