【摘 要】
:
针对遥感图像飞机检测中存在的背景复杂和目标尺度变化大等问题,提出基于深度神经网络的遥感图像飞机目标检测模型DC-DNN。利用图像底层特征制作像素级标签完成全卷积神经网络(FCN)模型训练,将FCN模型与DBSCAN密度聚类算法相结合选取飞机目标的自适应候选区域,并基于VGG-16网络提取候选区域高层特征以获取飞机目标检测框,同时通过检测框抑制算法剔除重叠框和误检框,得到最终的飞机目标检测结果。实验
【基金项目】
:
河北省自然科学基金(F2016403055),河北省高等学校科学研究计划项目(ZD2016005)
论文部分内容阅读
针对遥感图像飞机检测中存在的背景复杂和目标尺度变化大等问题,提出基于深度神经网络的遥感图像飞机目标检测模型DC-DNN。利用图像底层特征制作像素级标签完成全卷积神经网络(FCN)模型训练,将FCN模型与DBSCAN密度聚类算法相结合选取飞机目标的自适应候选区域,并基于VGG-16网络提取候选区域高层特征以获取飞机目标检测框,同时通过检测框抑制算法剔除重叠框和误检框,得到最终的飞机目标检测结果。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1值分别为95.78%、98.98
其他文献
本文初步总结了毕节地区漆树11个农家品种的树皮解剖结构。
图像集分类算法种类较多,但多数存在运算繁琐、计算成本高和时效性差的问题。为此,提出一种改进的图像重建与识别算法,利用线性回归分类和共享最近邻子空间分类理论进行图像重建和分类,通过将图像下采样建立的高维空间重建为子空间,避免计算复杂度较高的训练过程。利用各个类别的图像集子空间对测试图像进行回归模型估计,根据回归模型重建测试集中的图像,基于重建图像和原始图像间重建误差最小化法,采用加权投票策略对测试集
社会和经济的发展极大的改善了人们的生活水平与物质水平,用电需求也在逐年激增,这对供电公司而言是前所未有的要求和挑战。思想政治教育是影响供电公司员工思想的先决条件,
<正> 毛泽东同志说:“不论是简单的运动形式,或复杂的运动形式,不论是客观现象,或思想现象,矛盾是普遍地存在着,矛盾存在于一切过程中。”在社会主义企业里同样是如此,经常会
<正> 河南省民权葡萄酒厂,是全国同类行业中的大型企业之一。创建于一九五八年。现有职工一千一百多人,固定资产一千二百一十三万元,占地面积十五万六千平方米。早在一九六三
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们羽 制作:陈恬’#陈川个美食
Back to yield
人类蛋白图像分类的目的是识别蛋白质细胞器中的细胞核浆、核膜等定位标签。针对蛋白质分类数据集大、多标签类别不平衡以及类间差异小等问题,结合CSPPNet与集成学习,提出一种人类蛋白质图像分类方法。该方法构建了粗细结合的CSPPNet模型,且将该模型前几层卷积生成的特征图加入空间金字塔池化层,并与模型后期卷积生成的特征图相结合,同时利用图片的整体特征和局部特征自动检测图片差异,以提高细粒度图像分类问题
为解决当前主流图像超分辨率重建算法对低分辨率图像中细节信息利用不够充分的问题,提出一种基于多尺度反向投影的图像超分辨率重建算法。使用多个不同尺度的卷积核从浅层特征提取层中提取出不同维度的特征信息,输入到反向投影模块后,交替使用升采样和降采样来优化高分辨率和低分辨率图像的投影误差,同时运用残差学习的思想将升采样和降采样阶段提取到的特征使用级联的方式进行连接,从而提升图像的重建效果。实验结果表明,在S
<正> 学习党代表会议文件的一次讨论会上,一位支部书记不无感慨地联系实际说:现在无论啥都是厂长说了算,思想工作部门一点权威也没了.有位车间主任颇不以为然:思想工作部门又
传统的否定选择过程需要将全部检测器与测试数据进行匹配以排除异常数据,该匹配过程需要花费大量时间,导致检测效率过低。为此,提出一种基于检测器集层次聚类的否定选择算法