论文部分内容阅读
为提高小规模训练集下CNN特征驱动的浮选工况识别效果,提出一种基于泡沫红外与可见光图像CNN特征提取及自适应迁移学习的工况识别方法 .首先构建基于AlexNet的双模态CNN特征提取及识别模型,并通过RGB-D大规模数据集对模型的结构参数进行预训练;其次,用多个串联的双隐层自编码极限学习机代替预训练模型的全连接层,实现对双模态CNN特征的融合及逐层抽象提取,然后通过核极限学习机映射到更高维空间进行决策;最后构建浮选小规模数据集对迁移后的模型进行训练,并改进量子狼群算法用于模型参数优化.实验结果表明: