【摘 要】
:
目的对促排卵周期中第一次减数分裂中期未成熟卵子(MI卵子)经过常规体外成熟培养后获得的卵子(MI-MII卵子)与同胞MII卵子行卵质内单精子注射(ICSI)后的结局进行比较。方法回顾性分析了本中心2020年1月到2020年12月62个ICSI周期,共636枚卵子,其中509枚MII卵子在剥除卵丘细胞后即行ICSI;另外,收集45枚同周期内未成熟的MI卵子经4 h的体外成熟培养,39枚卵成熟到MII
【机 构】
:
同济大学附属第一妇婴保健院生殖医学中心
【基金项目】
:
雄原核因子促进体细胞克隆胚胎发育潜能的机制探索青年基金项目(31501196);
论文部分内容阅读
目的对促排卵周期中第一次减数分裂中期未成熟卵子(MI卵子)经过常规体外成熟培养后获得的卵子(MI-MII卵子)与同胞MII卵子行卵质内单精子注射(ICSI)后的结局进行比较。方法回顾性分析了本中心2020年1月到2020年12月62个ICSI周期,共636枚卵子,其中509枚MII卵子在剥除卵丘细胞后即行ICSI;另外,收集45枚同周期内未成熟的MI卵子经4 h的体外成熟培养,39枚卵成熟到MII(86.67%)后行ICSI,对两组卵子行ICSI后的受精率、卵裂率及妊娠结局进行比较。结果 MI-MII组的卵子ICSI后的退化率(10.26%)高于MII组(7.27%),但无显著差异(P>0.05);MI-MII组的2PN受精率(79.49%)高于MII组(67.78%)(P<0.01)。MI-MII组和MII组的异常受精率(5.13%,7.47%)差异显著(P<0.05);两组的延迟受精率差异不显著(P>0.05),但MI-MII组的延迟受精率较高(5.13%)。MI-MII组的卵裂率(84.85%)低于MII组(90.7%),但差异不显著(P>0.05);MI-MII组与MII组的有效胚胎率无显著差异(96.43%,86.43%)。MII组移植后临床累积妊娠25例(41.67%),其中2例流产(8%)。MI-MII组至今未获得妊娠。结论未成熟MI卵子经体外成熟后形成的MI-MII卵子,可以作为ICSI注射的卵子来源,能够受精、卵裂并且可以增加可移植胚胎的数量,提高卵子利用率。然而,与体内成熟的MII卵相比,来源于同胞未成熟MI经体外成熟的MI-MII卵子行ICSI后,胚胎发育潜力是降低的。
其他文献
目前,随着我国社会经济的迅速发展,水利水电工程企业的施工工作也有了较大改进,各种施工技术的研发和运用,这就使水利水电工程的水闸施工工作上升了一个新的台阶。良好的水闸施工能够更好地发挥水利水电工程的挡水和排水功能,也可以合理地控制水位情况,从而更好地防止洪涝灾害的出现。故本文将重点分析水闸施工技术的运用,并就相关技术要点进行思考,希望可以更好地推动水利水电工程建设施工工作的有效开展。
这篇论文以若干不同类型的倒向随机微分方程以及其应用为主要研究内容,包含了第二章,我们减弱了Peng和Yang [76]这篇文章中生成子的条件,得到了延迟倒向随机稳分方程解的存在唯一性、比较定理以及这类方程的LP解。在求Lp解的过程中,和[21]中求Lp解的方法比较,我们运用更直接的Picard迭代方法。第三章中,我们研究了非Lipschitz条件下带跳的延迟倒向随机微分方程,获得了这种方程和带跳的
奇异积分方程在物理和工程中有着广泛的应用.目前,对于奇异积分方程发展了许多行之有效的数值方法,其中配置法由于简单并且易于实施,成为求解奇异积分方程的一种重要方法.配置法的有效性通常依赖于数值积分的效率,在各类数值积分法中,Newton-Cotes公式对密度函数的正则性要求较低,网格选取自由,因而受到了许多关注.本文的主要工作可以分为三部分.第一部分我们主要研究圆周上Cauchy奇异积分的任意阶复化
本文主要研究带多个全特征退化方向的椭圆边值问题,包括解的存在性和多解性,以及变号解的存在性和多解性;带位势的动力学方程解的L2正则性;带对数非线性项的半线性拟抛物方程解的整体存在性和爆破。全文共分六章,具体如下:在第一章中,首先我们回顾奇异流形和其上椭圆边值问题(即带多个全特征退化方向的椭圆边值问题)的研究历史和发展现状,然后介绍动力学方程和拟抛物方程问题的来源和研究现状,最后叙述本文的主要结果。
本论文提出并系统地研究了平面弹性力学中有界单连通域上第一第二基本问题的稳定性.给出摄动基本问题的提法.引入两个全纯函数把问题转化为解析函数边值问题,利用全纯函数的Cauchy型积分表示式,问题进一步转化为Sherman-Lauricella万程,利用高阶差商函数的性质讨论了Sherman-Lauricella方程的解的稳定性,借助线积分的求导法则、Sherman-Lauricella方程的解的稳定
本文主要对单层均衡问题和双层均衡问题等两类均衡问题进行理论研究.研究内容具体包括以下六部分:第一部分,在Hausdorff拓扑向量空间中,本文研究一类约束集K和集值映像T分别受不同参数扰动的含参广义混合均衡问题(PGMEP).在适当条件下,建立(PGMEP)解映像s的非空性以及上半连续性.此外,利用间隙函数法,本文还得到了(PGMEP)解映像的H-连续性和B-连续性的充分条件.最后,给出一些例子说
在生存分析研究中,某些情形下,由于经费或者技术问题,主协变量的测量不能对所有参加试验的个体进行,而只能随机选择部分个体进行测量.这些个体构成的集合称为核实集.同时,研究者可以通过某些费用低廉和容易操作的手段获得该主协变量的辅助测量指标.这些指标称为主协变量的辅助信息.如果仅用核实集的信息进行统计推断,可能导致效率的损失.这种情形下,如何有效利用辅助信息提高统计推断的效率是研究者关心的热点问题.本文
互补问题自1963年首次提出后受到很多研究者的重视,尤其是最近30多年来,互补问题发展非常迅速,并且出现了各种形式的互补问题,极大的丰富了数学规划问题的研究内容,在经济、交通、控制等领域有着非常广泛的应用,因此,研究互补问题的求解算法非常有意义,研究求解互补问题的算法的研究领域也取得了丰硕的成果,对互补问题的研究可以分为理论研究和算法研究,前者主要研究解得存在性、唯一性、稳定性以及灵敏性分析等性质
同步是实际世界普遍存在的一种自然现象,比如鸟群的迁徙,鱼群的游动,萤火虫的同步闪烁等等,它长期以来一直是人们的研究主题.自从人们发现大量的真实网络具有小世界和无尺度的特征后,就开始关注复杂网络的同步问题,并开展了大量的研究工作.其中最值得关注的是,1998年Pecora和Carroll创立了主稳定函数法。它是研究复杂动力网络同步问题的一种最常见而有效的方法之一本文从网络节点动力学角度出发,主要研究