论文部分内容阅读
In the light of an increasing demand for staple food, especially rice, in southeast China, investigations on the specific site potential expressed as the relationship between soil and crop yield parameters gain increasing importance. Soil texture and several soil chemical parameters as well as plant properties such as crop height, biomass and grain yield were investigated along two terraced catenas with contrasting soil textures cropped with wet rice. We were aiming at identifying correlative relationships between soil and crop properties. Data were analyzed both statistically and geostatistically on the basis of semivariograms. Statistical analysis indicated a significant influence of the relief position on the spatial distribution of soil texture, total carbon and total nitrogen contents. Significant correlations were found for the catena located in a sandstone area (Catena A) between rice yield and silt as well as total nitrogen content. Corresponding relationships were not detectable for paddy fields that developed from Quaternary clays (Catena B). As suggested by the nugget to sill ratio, spatial variability of soil texture, total carbon and nitrogen was mainly controlled by intrinsic factors, which might be attributed to the erosional transport of fine soil constituents, indicating the importance of the relief position and slope in soil development even in landscapes that are terraced. The crop parameters exhibited short ranges of influence and about one third of their variability was unexplained. Comparable ranges of selected crop and soil parameters, found only for Catena A, are indicative of close spatial interactions between rice yield and soil features. Our findings show that especially in sandstone-dominated areas, a site-specific management can contribute to an environmentally safe rice production increase.
In the light of an increasing demand for staple food, especially rice, in southeast China, investigations on the specific site potential expressed as the relationship between soil and crop yield parameters gain increasing importance. Soil texture and several soil chemical parameters as well as plant properties such as crop height, biomass and grain yield were investigated along two terraced catenas with contrasting soil textures cropped with wet rice. Were both identifying correlative relationships between soil and crop properties. Data were analyzed both statistically and statically on the basis of semivariograms. Statistical analysis shows a significant influence of the relief position on the spatial distribution of soil texture, total carbon and total nitrogen contents. Significant correlations were found for the catena located in a sandstone area (Catena A) between rice yield and silt as well as total nitrogen content. Corresponding relationships were not detectab le for paddy fields that developed from Quaternary clays (Catena B). As suggested by the nugget to sill ratio, spatial variability of soil texture, total carbon and nitrogen was mainly controlled by intrinsic factors, which might be attributed to the erosional transport of fine soil constituents, indicating the importance of the relief position and slope in soil development even in landscapes that are terraced. The crop parameters showed short ranges of influence and about one third of their variability was unexplained. Comparable ranges of selected crop and soil parameters, found only for Catena A, are indicative of close spatial interactions between rice yield and soil features. Our findings show that especially in sandstone-dominated areas, a site-specific management can contribute to an environmentally safe rice production increase.