论文部分内容阅读
有一种基于PSO优化的模糊RBF神经网络学习算法,该算法首先将模糊RBF神经网络需要调整的参数作为粒子,利用PSO算法的全局搜索及快速收敛特性对模糊RBF神经网络结构进行优化,然后将经PSO算法优化的各参数结果作为模糊RBF神经网络各个参数的初始值,再结合梯度下降法对网络的各参数进行动态调整。将之应用于对UCI数据集的分类及函数逼近,仿真结果表明优化后的模糊RBF神经网络具有更高的精度及鲁棒性。