论文部分内容阅读
摘要:本文基于中国版《几何原本》重新审视测度问题,提出几何与几分理论下的测度等、测度邻域、测度势和测度连续等定义,并给出新理论下的确界定理、区间套定理、中值定理等。
关键词:测度;几何;几何原本;测度几何
本文基于徐光启版《几何原本》(以下称中国版《几何原本》)重新审视测度问题。中国版《几何原本》卷五第一界,阐述了“几何”之含义:“分者,几何之几何也。小能度大,以小为大之分。以小几何度大几何谓之分。曰,几何之几,何者谓非?此小几何不能为此大几何之分也。如一点无分亦非几何,即不能为线之分也。一线无广狭之分,非广狭之几何,即不能为面之分也。一面无厚薄之分,非厚薄之几何,即不能为体之分也。曰,能度大者谓小几何,大几何能尽大之分者也。”这段话清晰地阐述了何为“几何”:某量可以被更小的某度来分盡,既无不足亦无余数的,此量即为大几何,此度即为小几何。如果不能分尽,就“不为大几何内小几何也”,换言之,就不叫几何。本段对不能分尽的,给出了另一个专门名词“几分”。“若不尽分者,当称几分”。
一、切边角、曲线角与无穷小量的图形与数学表示
通常认为可绘制出的量均为有限小量,但中国版《几何原本》给出了可绘制的无穷小量“切边角”。“切边角”即切线与曲线的夹角,其无限趋于0但实际上并不等于0。进一步地,“切边角”是导数数据的代表,绝大多数导数值的极限为有穷值,但导数值本身并不是有穷值。例如:
(1)式即中国版《几何原本》所说的“曲线角”,其值包含无穷小量。通常说其实取的是时的极限值,即直线角斜率。任何时候的曲线角与斜率相差小量。因此可绘制出的量中通常均有无穷小量。由(1)亦可知,将舍弃为0的后果,是失去了“曲线”的特征。更一般地,现代数学把点作为线的构成部分,把单点作为无穷区间套的唯一公共点,都表明现代数学认为存在尺度为无限小乃至0的图形。
下文将含有无穷大、无穷小项的数值称为无穷数值,否则称为有穷数值。并用表示所有正无穷小数,表示所有负无穷小数。因此表示既不无穷小亦不无穷大的数(但既可能有穷也可能无穷),称为有限数。
二、现有极限、连续及相关定理存在的问题
当前的数学体系对测度的理解存在较大的问题,这也说明此数学体系的确是在中国版《几何原本》的基础上发展,但却错误中国版《几何原本》关于测度的阐述,从而出现方向性的问题。
关键词:测度;几何;几何原本;测度几何
本文基于徐光启版《几何原本》(以下称中国版《几何原本》)重新审视测度问题。中国版《几何原本》卷五第一界,阐述了“几何”之含义:“分者,几何之几何也。小能度大,以小为大之分。以小几何度大几何谓之分。曰,几何之几,何者谓非?此小几何不能为此大几何之分也。如一点无分亦非几何,即不能为线之分也。一线无广狭之分,非广狭之几何,即不能为面之分也。一面无厚薄之分,非厚薄之几何,即不能为体之分也。曰,能度大者谓小几何,大几何能尽大之分者也。”这段话清晰地阐述了何为“几何”:某量可以被更小的某度来分盡,既无不足亦无余数的,此量即为大几何,此度即为小几何。如果不能分尽,就“不为大几何内小几何也”,换言之,就不叫几何。本段对不能分尽的,给出了另一个专门名词“几分”。“若不尽分者,当称几分”。
一、切边角、曲线角与无穷小量的图形与数学表示
通常认为可绘制出的量均为有限小量,但中国版《几何原本》给出了可绘制的无穷小量“切边角”。“切边角”即切线与曲线的夹角,其无限趋于0但实际上并不等于0。进一步地,“切边角”是导数数据的代表,绝大多数导数值的极限为有穷值,但导数值本身并不是有穷值。例如:
(1)式即中国版《几何原本》所说的“曲线角”,其值包含无穷小量。通常说其实取的是时的极限值,即直线角斜率。任何时候的曲线角与斜率相差小量。因此可绘制出的量中通常均有无穷小量。由(1)亦可知,将舍弃为0的后果,是失去了“曲线”的特征。更一般地,现代数学把点作为线的构成部分,把单点作为无穷区间套的唯一公共点,都表明现代数学认为存在尺度为无限小乃至0的图形。
下文将含有无穷大、无穷小项的数值称为无穷数值,否则称为有穷数值。并用表示所有正无穷小数,表示所有负无穷小数。因此表示既不无穷小亦不无穷大的数(但既可能有穷也可能无穷),称为有限数。
二、现有极限、连续及相关定理存在的问题
当前的数学体系对测度的理解存在较大的问题,这也说明此数学体系的确是在中国版《几何原本》的基础上发展,但却错误中国版《几何原本》关于测度的阐述,从而出现方向性的问题。