论文部分内容阅读
对于非均匀复合材料中多个裂纹的动态断裂力学问题,提出了一种分析方法,假设复合材料为正交各向异性并含有多个垂直于厚度方向的裂纹,材料参数沿厚度方向为变化的,沿该方向将复合材料划分为许多单层,假设单层材料参数为常数,应用柔度矩阵/刚度矩阵方法及Fourier变换法,在Laplace域内推导出了控制问题的奇异积分方程组,并用虚位移原理求解,给出了应力强度因子及能量释放率的表达式,然后利用Laplace数值反演,得出了裂纹尖端的动态应力强度因子和能量释放率。作为算例,研究了带有两个裂纹的功能梯度结构,分析了材料参数的优化对降低应力强度因子的意义。
For the dynamic fracture mechanics of multiple cracks in inhomogeneous composites, an analytical method is proposed. Assuming that the composites are orthotropic and contain multiple cracks perpendicular to the thickness, the material parameters vary along the thickness , The composite material is divided into many single layers along the direction. Supposing the single-layer material parameters are constant, the singular integral equations governing the control problems are deduced in the Laplace domain using the flexibility matrix / stiffness matrix method and the Fourier transform method. Displacement principle to solve the stress intensity factor and energy release rate expression, and then use Laplace numerical inversion, the crack tip dynamic stress intensity factor and energy release rate. As an example, the functionally graded structure with two cracks was studied and the significance of optimization of material parameters to reduce the stress intensity factor was analyzed.