论文部分内容阅读
摘 要 基于空间统计分析方法,在Geoda空间统计分析的帮助下,通过教室与考场座位空间分布建立数据间的统计关系,利用2012-2013学年度第二学期2011级某专业统计学原理课程中各个同学的座次、成绩、出勤率数据,进行座次与出勤率、座次与成绩之间的相关性分析,发现了明显的空间相关性:出勤率高的同学倾向于前排就坐、成绩高的同学倾向于前排就坐。
关键词 座次分布 成绩 出勤率 空间统计分析
中图分类号:G445 文献标识码:A
Correlation of Student Grades, Attendance and Seating Distribution
——Based on Spatial Statistical Analysis Methods
ZHANG Zhen, KONG Li, XU Xin
(College of Agronomy and Biotechnology, Southwest University, Chongqing 400715)
Abstract Based on spatial statistic analysis, with the help of Geoda, the spatial distribution of the classroom and exam data manifest a statistical relationship which exists between grades, attendance and the distribution of seating. A significant spatial correlation is found that students who have high attendance tend to sit in the front row, and students who score higher tend to sit in the front row.
Key words seating distribution; grades; attendance; spatial statistical analysis
0 引言
空间统计分析主要用于空间数据的分类和综合评价,其核心是发掘基于空间地理位置的统计数据间的空间依赖、空间关联或空间自相关,通过空间地理位置建立数据间的统计关系,并作出各种相关的统计分析,来探究各变量之间的内在关系。
近年来,利用空间统计分析作为研究方法,吕安民(2002)曾对中国省级人口增长率进行了研究,并以空间统计分析方法研究了其内在的空间关联;左相国(2004)曾对人均GDP和农业人口比重对第三产业发展的制约作用进行了分析,研究国民经济发展水平和农业人口比重对第三产业发展的制约机制的规律性;杜国明(2007)等曾以沈阳市为例,研究了城市人口分布的空间自相关;以空间统计分析为研究方法的学术成果十分丰富。
以教室或考场为空间范围,在日常教学过程中可发现学生的座次、出勤率、考试成绩等呈现出较明显的空间分布特征,因此以空间分析工具开展教学研究将有助于揭示相关变量背后的关系。本文借助Geoda软件,利用西南大学2012-2013学年度第二学期2011级某专业课程上,各个同学的座次、成绩、出勤率等数据,分析了出勤率、学习成绩与上课座次与考试座次之间的空间相关关系,也即以空间统计分析——一种更直观的可视化的方式证明并显示了座次与出勤率之间、座次与成绩之间的空间相关性。
1 研究对象概况与数据来源、研究方法
1.1 研究对象概况与数据来源
本研究以某专业2011级69名同学为对象,统计了69名同学在2012-2013学年度上课座位分布数据,并分析了座位分布于69名同学的期末考试成绩之间的相关关系。
由于课程教学地点不一,根据研究设计,学生的上课座位分布都在12列8排的96个座位范围内(未考虑讲台、门窗、过道对分布的影响)。期末考试根据全校统一安排,学生的座位分布在7列11排的77个座位范围内。本文建立的教室与考场地图——也即座位的空间坐标方法①如下:
教室地图与考场地图编号方式如图1图2。不论是考场地图还是教室地图,两者都以下方(即85~96或71~77这一排)为教室最前排,以最上方(1~12或1~7这一排)为教室最后一排。
图1 教室地图 图2 考场地图
1.2 研究方法
1.2.1 确定空间权重矩阵
空间权重矩阵表达了不同空间对象之间的空间布局,如拓扑、邻接关系等,通常定义一个二元对称空间权重矩阵,来表达几个位置的空间区域的邻近关系,其形式如下:
(1)
其中,表示空间单元个数,表示区域与(在本文中即座位与)的邻居关系。本文以两个教室与考场内的96、77个座位建立基于空间邻接关系的权重矩阵,这里邻接的意思是具有公共边界,规则如下:
(2)
1.2.2 求局域空间自相关指标
局域空间自相关指标(Local indicators of spatial association,缩写为LISA)用于反映一个座位的数据属性与邻近座位的相关程度。局部Moran指数被定义为:
= (3)
1.2.3 标准差地图
标准差是总体各单位标准值与其平均数离差平方的算术平均数的平方根,它反映组内个体间的离散程度。借助Geoda095i软件,可以以可视化的方式呈现空间上的成绩、出勤率等差异。其定义方式为:
= (4)
2 研究假设 根据研究设定,本文提出以下假设:(1)座次分布与出勤率之间存在空间相关性。出勤率高的同学倾向于前排就坐,出勤率低的同学倾向于后排就坐,即前排座位上的同学倾向于具有高出勤率,后排座位上的同学倾向于具有低出勤率;(2)座次分布与成绩之间存在空间相关性。成绩高的同学倾向于前排就坐,成绩低的同学倾向于后排就坐,即前排座位上的同学成绩较高,后排座位上的同学成绩较低。
3 实证分析
3.1 座次与出勤率之间的空间相关性分析
图3 以出勤率为变量的教室标准差地图
图4 以出勤率为变量的教室标准差地图中的高出勤率空间聚集
统计数据记录了每次课每个座位上的同学的学号,然后将每个同学的出勤率与学号匹配,则可得到每次课每个座位上的同学的出勤率在教室座位上的空间分布。以此类推,根据可得18个课时分别对应的空间分布。此分析以每个座位为研究对象,有人坐记为1,无人坐记为0,赋予每个座位以数次出勤率,②再取这数次出勤率的均值,即可得到平均出勤率为每个座位赋值,以不同的颜色表示。也即在此分析中以每个座位为研究对象,求得坐在某座位的(不同或相同的)同学的出勤率的均值,将这个均值赋予此座位,表示坐在此位置上的(不同或相同的)同学的平均出勤率。然后借助软件可得教室地图中的出勤率分布的标准差地图,如图3。
在阴影区域(见图4)高出勤率占比最大(93.33%),高出勤率在此区域有明显的空间聚集特征,也即出勤率与座次之间存在明显的空间相关性,可以认为,出勤率高者倾向于坐在这一区域。其次可以发现,前五排中高出勤率者占到73.33%,低出勤率者仅占26.67%,前后差异十分明显。
为了验证这一点,可再求局域空间自相关指标LISA,以反映某座位的数据属性与邻近座位的相关性程度,算法如前述公式(3)。借助软件可得LISA Cluster Map,如图5。
图5 以出勤率为变量的教室局域空间自相关指标地图(LISA Cluster Map)
高高点指此座位自身的出勤率高且相邻接的座位的出勤率也高,意味着此处有高出勤率的空间聚集特征;低低点指此座位自身的出勤率低且相邻接座位的出勤率也低,意味着此处有低出勤率的空间聚集特征;低高点指此座位自身的出勤率低但相邻接座位的出勤率高,意味着此座位周围出现高出勤率的空间聚集特征;高低点指此座位自身的出勤率高但相邻接的座位出勤率低,意味着此座位周围出现低出勤率的空间聚集特征。
通过分析图5,可见高高点与低高点全在前四排,低低点全在后三排(高低点只有一个,故可忽略不计)。这个结果说明,前四排是高出勤率聚集之处(虽然有三个低出勤率点,但此三点周围却仍是高出勤率聚集),后三排是低出勤率聚集之处。此外,五个高高点中有四个分布在左侧,也即在前排中,高高点并非左右均匀分布,而是倾向于分布在左侧。
结合以上以出勤率为变量的地图及相关分析,可以得出结论:座次分布与出勤率之间存在空间相关性;高出勤率的同学倾向于前排就坐,且在前排左侧③出现明显空间聚集特征;低出勤率的同学倾向于后排就坐;也即前排(尤其是左侧)就坐的同学倾向于拥有较高出勤率,后排就坐的同学倾向于拥有较低出勤率。因此证明了本文提出的第一个假设。
3.2 座次与学习成绩之间的空间相关性分析
3.2.1 平均座位排数与成绩的统计描述
图6是位于33教的统计学考试的考场地图,是成绩的标准差地图。每个方格的不同颜色代表坐在此位置上的同学的成绩。也即反映了统计学考试的考场中,每个同学的分数在考场座位中的空间分布。在图中可发现,阴影区域的同学成绩普遍较高,这一区域的成绩分布有明显的空间聚集特征。为了探求这些同学较高的成绩是否与平时上课的座位排数——坐在较前排或较后排相关,也即其成绩是否影响其座位选择,分析图6。
图6 以成绩为变量的考场标准差地图
图7也是33教统计学考试的考场地图,但方格的属性发生了变化——每个方格的不同颜色代表了坐在此位置上的同学平时上课所坐位置的平均排数。也即图7为平均排数的标准差地图,反映了在统计学考试的考场中,每个同学平时上课所坐位置的平均排数在考场座位中的空间分布。对比图6与图7,可以发现,图6中成绩较高的阴影部分刚好对应图7中的平均排数较低的阴影部分。
图7 以平均排数为变量的考场标准差地图
因此可以推论,平时上课的平均座位排数较低(即前排就坐)的同学倾向于拥有较高成绩,而平均座位排数本身即反映了座次分布,故可以初步推论座次分布与成绩之间存在空间相关性。
3.2.2 座次与成绩之间的空间相关性分析
为了验证上述初步推论,分析18个统计学课时中每个同学的座次分布。
如座次与出勤率之间的空间相关性分析,数据记录了在32教每次课每个座位上的同学的学号,将每个同学的分数与学号匹配,则可得到每次课每个座位上的同学的成绩在教室座位上的空间分布。以此类推,可得18个课时分别对应的空间分布。与图6图7的分析不同之处在于,此分析中不再以每个同学为研究对象,而是以每个座位为研究对象,即赋予每个座位以数次成绩,④再取这数次成绩的均值,即可得到为每个座位赋予的成绩属性,以不同的颜色表示。也即在此分析中以每个座位为研究对象,求得坐在某座位的(不同或相同的)同学的成绩的均值,将这个均值赋予此座位,表示坐在此位置上的(不同或相同的)同学的平均成绩。见图8,以成绩为变量的教室标准差地图。
图8 以成绩为变量的教室标准差地图
分析图8可知,图中阴影区域呈现出明显的空间聚集特征,表明平时坐在这一区域的座位上的同学们的成绩较高,⑤前排就坐的同学的成绩倾向于高于后排就坐的同学,也即成绩高的同学倾向于选择前排就坐,成绩低的同学倾向于后排就坐。 为了更严密地验证这一点,可采取以下分析。
第一,以成绩的均值68.835为界。以前后四排为单位,在教室前四排48个座位中,高于平均成绩者33个,低于平均成绩者15个,分别占比68.75%、31.25%;在教室后四排48个座位中,高于平均成绩者15个,低于平均成绩者33个,分别占比31.25%、68.25%。以前后两排为单位,在前两排24个座位中,高于平均成绩17个,低于平均成绩者7个,分别占比70.83%、29.17%;在后两排24个座位中,高于平均成绩6个,低于平均成绩者18个,分别占比25%、75%。
第二,以前后四排为单位,在48个高于平均成绩者中,有33个分布在前四排,15个分布在后四排,分别占比68.75%、31.25%;在48个低于平均成绩者中,有15个分布在前四排,33个分布在后四排,分别占比31.25%、68.25%。以前后两排为单位,在23个高于平均成绩者中,有17个分布在前两排,6个分布在后两排,分别占比73.91%、26.09%;在25个低于平均成绩者中,有7个分布在前两排,18个分布在后两排,分别占比28%、72%。
第三,选出成绩的后十名(如图9)考察,发现后十名中坐在前四排者有2个,坐在后四排者有八个。而选出成绩的前十名(如图10)考察,发现前十名中坐在前三排者有4个,在第四五排者有五个,而在后三排者只有一个。
图9 以成绩为变量的教室标准差地图中的成绩后十名者
图10 以成绩为变量的教室标准差地图中的成绩前十名者
通过以上分析可得结论:成绩与出勤率之间存在空间相关性。在教室前后,成绩差异较大,而前后两排成绩差异尤为明显。成绩高的同学倾向于前排就坐,成绩低的同学倾向于后排就坐,也即前排座位上的同学倾向于具有较高成绩,后排座位上的同学倾向于具有较低成绩。
4 结论
本文以课程18个课时中的各同学座次分布及其成绩、出勤率数据为支撑,对其进行了空间统计分析,证明了本文提出的相应的两个假设:第一,座次分布与出勤率之间存在空间相关性:出勤率高的同学倾向于前排就坐,出勤率低的同学倾向于后排就坐,也即前排座位上的同学倾向于具有高出勤率,后排座位上的同学倾向于具有低出勤率;第二,座次分布与成绩之间存在空间相关性:成绩高的同学倾向于前排就坐,成绩低的同学倾向于后排就坐,也即前排座位上的同学倾向于具有较高成绩,后排座位上的同学倾向于具有较低成绩。
本文借助Geoda软件进行分析,无疑具有直观、简洁的优点。但是不可避免,本文仍存在不足之处。如某些因素可能对本文分析的两种空间相关性产生影响(如同宿舍的同学倾向于聚集)。若将这种影响纳入本文的分析,虽在建模上可行,但是由于实际操作层面存在诸多困难,故未纳入本文的分析。因此,关于座位分布、成绩、出勤率之间的空间相关性,仍有待进一步更详实的实证研究。
基金项目:重庆市高等学校人才培养模式创新实验区项目;西南大学教育教学改革研究项目(2012JY047)
*通讯作者:孔立
注释
① 为了处理数据的方便,地图中未考虑教室中的过道,但这并不影响本文的分析与论证.
② 由于座位数大于同学人数,所以每个座位被坐次数6.
③ 之所以呈现出左右分布不对称,从生活经验可知是因为32教与35教上课的教室中PPT投影皆位于(面向讲台)左侧.
④ 如脚注2,每个座位被坐次数6.
⑤ 如脚注3,出现左右分布不对称是因为上课的教室中PPT投影位于左侧.
参考文献
[1] 吕安民,李成名,林宗坚,等.中国省级人口增长率及其空间关联分析.地理学报,2002.57(2):143-150.
[2] 左相国.人均和农业人口比重对第三产业发展的边际贡献.统计观察,2004(4):58-59.
[3] 杜国明,张树文,张有全.城市人口分布的空间自相关分析——以沈阳市为例.地理研究,2007.26(2):383~389.
[4] Anselin L.Spatial Econometrics: Methods and Models.1988.
[5] Anselin, L, J Le Gallo, H. Jayet. Spatial panel econometrics.2005.
[6] Huang Runlong, Shuai Youliang. The logistic model and application study on population increase. Journal of Nan-jing College for Population Programmer Management,2000.16(3):25-27.
[7] 左相国,黎志成.第三产业发展水平与人均GDP和农业人口比重之间的关系分析.统计观察,2003(1):50-51.
[8] Cliff AD ord JK. Spatial Autocorrelation. London: Pion,1973:7~17.
[9] Anselin L. Local indicators of spatial association-LISA. Geographical Analysis, 1995.27:93-115.
关键词 座次分布 成绩 出勤率 空间统计分析
中图分类号:G445 文献标识码:A
Correlation of Student Grades, Attendance and Seating Distribution
——Based on Spatial Statistical Analysis Methods
ZHANG Zhen, KONG Li, XU Xin
(College of Agronomy and Biotechnology, Southwest University, Chongqing 400715)
Abstract Based on spatial statistic analysis, with the help of Geoda, the spatial distribution of the classroom and exam data manifest a statistical relationship which exists between grades, attendance and the distribution of seating. A significant spatial correlation is found that students who have high attendance tend to sit in the front row, and students who score higher tend to sit in the front row.
Key words seating distribution; grades; attendance; spatial statistical analysis
0 引言
空间统计分析主要用于空间数据的分类和综合评价,其核心是发掘基于空间地理位置的统计数据间的空间依赖、空间关联或空间自相关,通过空间地理位置建立数据间的统计关系,并作出各种相关的统计分析,来探究各变量之间的内在关系。
近年来,利用空间统计分析作为研究方法,吕安民(2002)曾对中国省级人口增长率进行了研究,并以空间统计分析方法研究了其内在的空间关联;左相国(2004)曾对人均GDP和农业人口比重对第三产业发展的制约作用进行了分析,研究国民经济发展水平和农业人口比重对第三产业发展的制约机制的规律性;杜国明(2007)等曾以沈阳市为例,研究了城市人口分布的空间自相关;以空间统计分析为研究方法的学术成果十分丰富。
以教室或考场为空间范围,在日常教学过程中可发现学生的座次、出勤率、考试成绩等呈现出较明显的空间分布特征,因此以空间分析工具开展教学研究将有助于揭示相关变量背后的关系。本文借助Geoda软件,利用西南大学2012-2013学年度第二学期2011级某专业课程上,各个同学的座次、成绩、出勤率等数据,分析了出勤率、学习成绩与上课座次与考试座次之间的空间相关关系,也即以空间统计分析——一种更直观的可视化的方式证明并显示了座次与出勤率之间、座次与成绩之间的空间相关性。
1 研究对象概况与数据来源、研究方法
1.1 研究对象概况与数据来源
本研究以某专业2011级69名同学为对象,统计了69名同学在2012-2013学年度上课座位分布数据,并分析了座位分布于69名同学的期末考试成绩之间的相关关系。
由于课程教学地点不一,根据研究设计,学生的上课座位分布都在12列8排的96个座位范围内(未考虑讲台、门窗、过道对分布的影响)。期末考试根据全校统一安排,学生的座位分布在7列11排的77个座位范围内。本文建立的教室与考场地图——也即座位的空间坐标方法①如下:
教室地图与考场地图编号方式如图1图2。不论是考场地图还是教室地图,两者都以下方(即85~96或71~77这一排)为教室最前排,以最上方(1~12或1~7这一排)为教室最后一排。
图1 教室地图 图2 考场地图
1.2 研究方法
1.2.1 确定空间权重矩阵
空间权重矩阵表达了不同空间对象之间的空间布局,如拓扑、邻接关系等,通常定义一个二元对称空间权重矩阵,来表达几个位置的空间区域的邻近关系,其形式如下:
(1)
其中,表示空间单元个数,表示区域与(在本文中即座位与)的邻居关系。本文以两个教室与考场内的96、77个座位建立基于空间邻接关系的权重矩阵,这里邻接的意思是具有公共边界,规则如下:
(2)
1.2.2 求局域空间自相关指标
局域空间自相关指标(Local indicators of spatial association,缩写为LISA)用于反映一个座位的数据属性与邻近座位的相关程度。局部Moran指数被定义为:
= (3)
1.2.3 标准差地图
标准差是总体各单位标准值与其平均数离差平方的算术平均数的平方根,它反映组内个体间的离散程度。借助Geoda095i软件,可以以可视化的方式呈现空间上的成绩、出勤率等差异。其定义方式为:
= (4)
2 研究假设 根据研究设定,本文提出以下假设:(1)座次分布与出勤率之间存在空间相关性。出勤率高的同学倾向于前排就坐,出勤率低的同学倾向于后排就坐,即前排座位上的同学倾向于具有高出勤率,后排座位上的同学倾向于具有低出勤率;(2)座次分布与成绩之间存在空间相关性。成绩高的同学倾向于前排就坐,成绩低的同学倾向于后排就坐,即前排座位上的同学成绩较高,后排座位上的同学成绩较低。
3 实证分析
3.1 座次与出勤率之间的空间相关性分析
图3 以出勤率为变量的教室标准差地图
图4 以出勤率为变量的教室标准差地图中的高出勤率空间聚集
统计数据记录了每次课每个座位上的同学的学号,然后将每个同学的出勤率与学号匹配,则可得到每次课每个座位上的同学的出勤率在教室座位上的空间分布。以此类推,根据可得18个课时分别对应的空间分布。此分析以每个座位为研究对象,有人坐记为1,无人坐记为0,赋予每个座位以数次出勤率,②再取这数次出勤率的均值,即可得到平均出勤率为每个座位赋值,以不同的颜色表示。也即在此分析中以每个座位为研究对象,求得坐在某座位的(不同或相同的)同学的出勤率的均值,将这个均值赋予此座位,表示坐在此位置上的(不同或相同的)同学的平均出勤率。然后借助软件可得教室地图中的出勤率分布的标准差地图,如图3。
在阴影区域(见图4)高出勤率占比最大(93.33%),高出勤率在此区域有明显的空间聚集特征,也即出勤率与座次之间存在明显的空间相关性,可以认为,出勤率高者倾向于坐在这一区域。其次可以发现,前五排中高出勤率者占到73.33%,低出勤率者仅占26.67%,前后差异十分明显。
为了验证这一点,可再求局域空间自相关指标LISA,以反映某座位的数据属性与邻近座位的相关性程度,算法如前述公式(3)。借助软件可得LISA Cluster Map,如图5。
图5 以出勤率为变量的教室局域空间自相关指标地图(LISA Cluster Map)
高高点指此座位自身的出勤率高且相邻接的座位的出勤率也高,意味着此处有高出勤率的空间聚集特征;低低点指此座位自身的出勤率低且相邻接座位的出勤率也低,意味着此处有低出勤率的空间聚集特征;低高点指此座位自身的出勤率低但相邻接座位的出勤率高,意味着此座位周围出现高出勤率的空间聚集特征;高低点指此座位自身的出勤率高但相邻接的座位出勤率低,意味着此座位周围出现低出勤率的空间聚集特征。
通过分析图5,可见高高点与低高点全在前四排,低低点全在后三排(高低点只有一个,故可忽略不计)。这个结果说明,前四排是高出勤率聚集之处(虽然有三个低出勤率点,但此三点周围却仍是高出勤率聚集),后三排是低出勤率聚集之处。此外,五个高高点中有四个分布在左侧,也即在前排中,高高点并非左右均匀分布,而是倾向于分布在左侧。
结合以上以出勤率为变量的地图及相关分析,可以得出结论:座次分布与出勤率之间存在空间相关性;高出勤率的同学倾向于前排就坐,且在前排左侧③出现明显空间聚集特征;低出勤率的同学倾向于后排就坐;也即前排(尤其是左侧)就坐的同学倾向于拥有较高出勤率,后排就坐的同学倾向于拥有较低出勤率。因此证明了本文提出的第一个假设。
3.2 座次与学习成绩之间的空间相关性分析
3.2.1 平均座位排数与成绩的统计描述
图6是位于33教的统计学考试的考场地图,是成绩的标准差地图。每个方格的不同颜色代表坐在此位置上的同学的成绩。也即反映了统计学考试的考场中,每个同学的分数在考场座位中的空间分布。在图中可发现,阴影区域的同学成绩普遍较高,这一区域的成绩分布有明显的空间聚集特征。为了探求这些同学较高的成绩是否与平时上课的座位排数——坐在较前排或较后排相关,也即其成绩是否影响其座位选择,分析图6。
图6 以成绩为变量的考场标准差地图
图7也是33教统计学考试的考场地图,但方格的属性发生了变化——每个方格的不同颜色代表了坐在此位置上的同学平时上课所坐位置的平均排数。也即图7为平均排数的标准差地图,反映了在统计学考试的考场中,每个同学平时上课所坐位置的平均排数在考场座位中的空间分布。对比图6与图7,可以发现,图6中成绩较高的阴影部分刚好对应图7中的平均排数较低的阴影部分。
图7 以平均排数为变量的考场标准差地图
因此可以推论,平时上课的平均座位排数较低(即前排就坐)的同学倾向于拥有较高成绩,而平均座位排数本身即反映了座次分布,故可以初步推论座次分布与成绩之间存在空间相关性。
3.2.2 座次与成绩之间的空间相关性分析
为了验证上述初步推论,分析18个统计学课时中每个同学的座次分布。
如座次与出勤率之间的空间相关性分析,数据记录了在32教每次课每个座位上的同学的学号,将每个同学的分数与学号匹配,则可得到每次课每个座位上的同学的成绩在教室座位上的空间分布。以此类推,可得18个课时分别对应的空间分布。与图6图7的分析不同之处在于,此分析中不再以每个同学为研究对象,而是以每个座位为研究对象,即赋予每个座位以数次成绩,④再取这数次成绩的均值,即可得到为每个座位赋予的成绩属性,以不同的颜色表示。也即在此分析中以每个座位为研究对象,求得坐在某座位的(不同或相同的)同学的成绩的均值,将这个均值赋予此座位,表示坐在此位置上的(不同或相同的)同学的平均成绩。见图8,以成绩为变量的教室标准差地图。
图8 以成绩为变量的教室标准差地图
分析图8可知,图中阴影区域呈现出明显的空间聚集特征,表明平时坐在这一区域的座位上的同学们的成绩较高,⑤前排就坐的同学的成绩倾向于高于后排就坐的同学,也即成绩高的同学倾向于选择前排就坐,成绩低的同学倾向于后排就坐。 为了更严密地验证这一点,可采取以下分析。
第一,以成绩的均值68.835为界。以前后四排为单位,在教室前四排48个座位中,高于平均成绩者33个,低于平均成绩者15个,分别占比68.75%、31.25%;在教室后四排48个座位中,高于平均成绩者15个,低于平均成绩者33个,分别占比31.25%、68.25%。以前后两排为单位,在前两排24个座位中,高于平均成绩17个,低于平均成绩者7个,分别占比70.83%、29.17%;在后两排24个座位中,高于平均成绩6个,低于平均成绩者18个,分别占比25%、75%。
第二,以前后四排为单位,在48个高于平均成绩者中,有33个分布在前四排,15个分布在后四排,分别占比68.75%、31.25%;在48个低于平均成绩者中,有15个分布在前四排,33个分布在后四排,分别占比31.25%、68.25%。以前后两排为单位,在23个高于平均成绩者中,有17个分布在前两排,6个分布在后两排,分别占比73.91%、26.09%;在25个低于平均成绩者中,有7个分布在前两排,18个分布在后两排,分别占比28%、72%。
第三,选出成绩的后十名(如图9)考察,发现后十名中坐在前四排者有2个,坐在后四排者有八个。而选出成绩的前十名(如图10)考察,发现前十名中坐在前三排者有4个,在第四五排者有五个,而在后三排者只有一个。
图9 以成绩为变量的教室标准差地图中的成绩后十名者
图10 以成绩为变量的教室标准差地图中的成绩前十名者
通过以上分析可得结论:成绩与出勤率之间存在空间相关性。在教室前后,成绩差异较大,而前后两排成绩差异尤为明显。成绩高的同学倾向于前排就坐,成绩低的同学倾向于后排就坐,也即前排座位上的同学倾向于具有较高成绩,后排座位上的同学倾向于具有较低成绩。
4 结论
本文以课程18个课时中的各同学座次分布及其成绩、出勤率数据为支撑,对其进行了空间统计分析,证明了本文提出的相应的两个假设:第一,座次分布与出勤率之间存在空间相关性:出勤率高的同学倾向于前排就坐,出勤率低的同学倾向于后排就坐,也即前排座位上的同学倾向于具有高出勤率,后排座位上的同学倾向于具有低出勤率;第二,座次分布与成绩之间存在空间相关性:成绩高的同学倾向于前排就坐,成绩低的同学倾向于后排就坐,也即前排座位上的同学倾向于具有较高成绩,后排座位上的同学倾向于具有较低成绩。
本文借助Geoda软件进行分析,无疑具有直观、简洁的优点。但是不可避免,本文仍存在不足之处。如某些因素可能对本文分析的两种空间相关性产生影响(如同宿舍的同学倾向于聚集)。若将这种影响纳入本文的分析,虽在建模上可行,但是由于实际操作层面存在诸多困难,故未纳入本文的分析。因此,关于座位分布、成绩、出勤率之间的空间相关性,仍有待进一步更详实的实证研究。
基金项目:重庆市高等学校人才培养模式创新实验区项目;西南大学教育教学改革研究项目(2012JY047)
*通讯作者:孔立
注释
① 为了处理数据的方便,地图中未考虑教室中的过道,但这并不影响本文的分析与论证.
② 由于座位数大于同学人数,所以每个座位被坐次数6.
③ 之所以呈现出左右分布不对称,从生活经验可知是因为32教与35教上课的教室中PPT投影皆位于(面向讲台)左侧.
④ 如脚注2,每个座位被坐次数6.
⑤ 如脚注3,出现左右分布不对称是因为上课的教室中PPT投影位于左侧.
参考文献
[1] 吕安民,李成名,林宗坚,等.中国省级人口增长率及其空间关联分析.地理学报,2002.57(2):143-150.
[2] 左相国.人均和农业人口比重对第三产业发展的边际贡献.统计观察,2004(4):58-59.
[3] 杜国明,张树文,张有全.城市人口分布的空间自相关分析——以沈阳市为例.地理研究,2007.26(2):383~389.
[4] Anselin L.Spatial Econometrics: Methods and Models.1988.
[5] Anselin, L, J Le Gallo, H. Jayet. Spatial panel econometrics.2005.
[6] Huang Runlong, Shuai Youliang. The logistic model and application study on population increase. Journal of Nan-jing College for Population Programmer Management,2000.16(3):25-27.
[7] 左相国,黎志成.第三产业发展水平与人均GDP和农业人口比重之间的关系分析.统计观察,2003(1):50-51.
[8] Cliff AD ord JK. Spatial Autocorrelation. London: Pion,1973:7~17.
[9] Anselin L. Local indicators of spatial association-LISA. Geographical Analysis, 1995.27:93-115.