论文部分内容阅读
数学实验教学是让学生通过自己动手操作,进行探究、发现、思考、分析、归纳等思维活动,最后获得概念、理解或解决问题的一种教学过程。在这个过程中,教师是通过提问引导和启发学生学习研究数学问题的方法,仍然处于主(要引)导的地位,而学生则处于主动学习的地位。
一、通过数学实验,培养学生的创新思维能力
数学理念的抽象性通常都有某种“直观”的想法为背景。作为教师,就应该通过实验,把这种“直观”的背景显现出来,帮助学生抓住其本质,了解它的变形和发展及与其它问题的联系。
例如,对于三角形的“内心、外心、重心”的存在性,初中教材中未加证明,学生作图稍有不准确,就难以得出符合要求的结论。教师就可通过实验——抓纸活动,使学生领悟其本质。
让每一个学生准备一块三角形纸片(图略),过A作一折叠使AB落在AC上,得折痕AD,则AD平分∠BAC。同样方法得出折痕BE、CF。这样,学生就直观地发现:三角形三个角的平分分线交于一点,这一点即为三角形的内心。相似地,可以折出三角形的外心、重心,进一步启发学生,还可折出三角形的垂心。通过折纸与搭火柴棒这些直观形象的实验来阐述抽象的数学内容,这在教材中是很多的,如“三角形内角和定理”、“三角形中位线定理”、“直角三角形斜边中线等于斜边的一半”、“勾股定理”、“特殊直角三角形”及“平行线分线段成比例”等等。通过这些实验操作,一方面能使学生更深入、更扎实地掌握数学知识;另一方面,也使他们在思维方式上不会犯浮夸和刻板的毛病,又能准确抓住事物的本质,提出符合实际的有创新的看法。
二、通过数学实验,突破课堂中的教学难点
对于教学中的一些疑难点,如不借助于一定的实验手段,就不能调动学生思维的积极性,也很难达到预定的教学目标。例如,在初一数学“质量分数应用题”的教学时,由于学生缺乏自然科学中的有关知识,很难理解这部分内容。这时,教师可借助实验的方法来解决这一问题。
先让每个学生准备一个水杯和二份50g盐,教师在讲清质量分数的概念的基础上开始做实验。教师用量杯给每个学生倒200g水,然后让学生把50g盐加入水中,这样这杯盐水就有250g。那么盐水中盐的质量分数是多少?学生就能自然地回答出。让学生尝尝咸味,感受一下。然后再把剩下的50g盐加入盐水杯中,这时盐水中盐的质量分数应是多少?学生也能快速回答出。再让学生尝尝咸味,学生发现盐水比原来咸多了(盐的质量分数增大了)。
通过实验,学生获得了深刻的感性认识,然后教师通过对实验进行分析、概括、推理、判断,使学生的认识上升到了一种理性的高度。
三、通过数学实验,激励学生在生活中应用数学
通过数学教学帮助学生树立数学应用意识是素质教育的一项重要任务。这就会要求教师必须创设一种实验环境,使学生能受到必要的数学应用的实际训练,否则强调应用意识就成为一句空话。
例如,学校每年都要举行运动会,运动会场地可组织学生来画。跑道的线宽、道宽的尺寸一般都有规定的标准,当100m、200m、400m、800m等径赛项目的终点位置确定时,其起点位置如何确定?相应的每条跑道的前伸数怎样确定?标枪、铅球、铁饼场地怎样画?相应的角度怎样确定?这些应用到的数学知识虽简单,但在实际操作中却并不简单。通过教师的指导,使学生领悟到跑道上也蕴含着丰富的数学知识。这样,通过学生的主体参与,使学生亲自体验到了思维加工的过程,强化了学生“解决问题”的能力,可激励学生多把数学知识应用于生活。
四、通过数学实验,发现几何问题解决的方法及规律
几何证明,学生常常感到无从下手,这是几何学习中最困难的地方之一。事实上,几何证明的方法常常也是通过对图形的操作,如变形、变换、添加辅助图形等多种多次的尝试而被发现的。发现了证明的方法后,顺便也就证明了前面“发现(猜想)”的正确性,于是结论也就出来了。
下面是一例发现三角形内接矩形的面积变化规律的“数学实验”的做法。①出示图形(图略):在△ABC中,P是BC边上的任意一点,以P为顶点作△ABC的内接矩形,使矩形的一边在BC上。②使点P在BC上运动,矩形面积随之变化。③设BP为x,矩形面积为y,建立x与y间的关系,让学生观察当x变化时,y的变化特点及其是否有最大值。④显示当P点运动时,对应的动点(x,y)的运动轨迹,让学生对第③问中的观察结果进行验证,最后完整显示抛物线。⑤改变△ABC的形状,研究△ABC的底边BC或BC边上的高变化时,对抛物线形状有什么影响。
在上述例子中,学生参与实验的过程实际上是在观察实验模拟过程中思考。当然,在问题讨论环节中,部分学生仍可发挥创造性,提出自己新的“实验”设想,并上讲台进行实验操作演示或由教师择优实验。
在网络教室环境中,学生在教师实验方案的引导下或在自行设计的实验方案中,自主实验研究的天地更为广阔,机会和时间更多,兴趣更浓,参与程度更高,小组协商学习真正成为可能,因而“研究性学习”的教学思想体现得更加充分,“研究性学习能力培养”的教学达成度也会更高。
我们坚信:每当我们从数学的本质特点和学生的认知特点出发,运用CAI这种工具和载体,通过数学实验这种教与学的方式,去致力于影响学生数学认知结构的意义建构,去帮助学生本质地理解数学,培养数学精神和发现、创造的能力时,我们就把握住了数学教育的时代性、科学性,我们就深入到了数学素质教育的核心。伴随着CAI技术的日新月异,数学实验的教学内容将逐渐增加,实验素材库将不断壮大,实验技术将更为先进与精巧,因而数学实验的教学思想和模式将具有更为广阔的天地、更为重大的作为。
一、通过数学实验,培养学生的创新思维能力
数学理念的抽象性通常都有某种“直观”的想法为背景。作为教师,就应该通过实验,把这种“直观”的背景显现出来,帮助学生抓住其本质,了解它的变形和发展及与其它问题的联系。
例如,对于三角形的“内心、外心、重心”的存在性,初中教材中未加证明,学生作图稍有不准确,就难以得出符合要求的结论。教师就可通过实验——抓纸活动,使学生领悟其本质。
让每一个学生准备一块三角形纸片(图略),过A作一折叠使AB落在AC上,得折痕AD,则AD平分∠BAC。同样方法得出折痕BE、CF。这样,学生就直观地发现:三角形三个角的平分分线交于一点,这一点即为三角形的内心。相似地,可以折出三角形的外心、重心,进一步启发学生,还可折出三角形的垂心。通过折纸与搭火柴棒这些直观形象的实验来阐述抽象的数学内容,这在教材中是很多的,如“三角形内角和定理”、“三角形中位线定理”、“直角三角形斜边中线等于斜边的一半”、“勾股定理”、“特殊直角三角形”及“平行线分线段成比例”等等。通过这些实验操作,一方面能使学生更深入、更扎实地掌握数学知识;另一方面,也使他们在思维方式上不会犯浮夸和刻板的毛病,又能准确抓住事物的本质,提出符合实际的有创新的看法。
二、通过数学实验,突破课堂中的教学难点
对于教学中的一些疑难点,如不借助于一定的实验手段,就不能调动学生思维的积极性,也很难达到预定的教学目标。例如,在初一数学“质量分数应用题”的教学时,由于学生缺乏自然科学中的有关知识,很难理解这部分内容。这时,教师可借助实验的方法来解决这一问题。
先让每个学生准备一个水杯和二份50g盐,教师在讲清质量分数的概念的基础上开始做实验。教师用量杯给每个学生倒200g水,然后让学生把50g盐加入水中,这样这杯盐水就有250g。那么盐水中盐的质量分数是多少?学生就能自然地回答出。让学生尝尝咸味,感受一下。然后再把剩下的50g盐加入盐水杯中,这时盐水中盐的质量分数应是多少?学生也能快速回答出。再让学生尝尝咸味,学生发现盐水比原来咸多了(盐的质量分数增大了)。
通过实验,学生获得了深刻的感性认识,然后教师通过对实验进行分析、概括、推理、判断,使学生的认识上升到了一种理性的高度。
三、通过数学实验,激励学生在生活中应用数学
通过数学教学帮助学生树立数学应用意识是素质教育的一项重要任务。这就会要求教师必须创设一种实验环境,使学生能受到必要的数学应用的实际训练,否则强调应用意识就成为一句空话。
例如,学校每年都要举行运动会,运动会场地可组织学生来画。跑道的线宽、道宽的尺寸一般都有规定的标准,当100m、200m、400m、800m等径赛项目的终点位置确定时,其起点位置如何确定?相应的每条跑道的前伸数怎样确定?标枪、铅球、铁饼场地怎样画?相应的角度怎样确定?这些应用到的数学知识虽简单,但在实际操作中却并不简单。通过教师的指导,使学生领悟到跑道上也蕴含着丰富的数学知识。这样,通过学生的主体参与,使学生亲自体验到了思维加工的过程,强化了学生“解决问题”的能力,可激励学生多把数学知识应用于生活。
四、通过数学实验,发现几何问题解决的方法及规律
几何证明,学生常常感到无从下手,这是几何学习中最困难的地方之一。事实上,几何证明的方法常常也是通过对图形的操作,如变形、变换、添加辅助图形等多种多次的尝试而被发现的。发现了证明的方法后,顺便也就证明了前面“发现(猜想)”的正确性,于是结论也就出来了。
下面是一例发现三角形内接矩形的面积变化规律的“数学实验”的做法。①出示图形(图略):在△ABC中,P是BC边上的任意一点,以P为顶点作△ABC的内接矩形,使矩形的一边在BC上。②使点P在BC上运动,矩形面积随之变化。③设BP为x,矩形面积为y,建立x与y间的关系,让学生观察当x变化时,y的变化特点及其是否有最大值。④显示当P点运动时,对应的动点(x,y)的运动轨迹,让学生对第③问中的观察结果进行验证,最后完整显示抛物线。⑤改变△ABC的形状,研究△ABC的底边BC或BC边上的高变化时,对抛物线形状有什么影响。
在上述例子中,学生参与实验的过程实际上是在观察实验模拟过程中思考。当然,在问题讨论环节中,部分学生仍可发挥创造性,提出自己新的“实验”设想,并上讲台进行实验操作演示或由教师择优实验。
在网络教室环境中,学生在教师实验方案的引导下或在自行设计的实验方案中,自主实验研究的天地更为广阔,机会和时间更多,兴趣更浓,参与程度更高,小组协商学习真正成为可能,因而“研究性学习”的教学思想体现得更加充分,“研究性学习能力培养”的教学达成度也会更高。
我们坚信:每当我们从数学的本质特点和学生的认知特点出发,运用CAI这种工具和载体,通过数学实验这种教与学的方式,去致力于影响学生数学认知结构的意义建构,去帮助学生本质地理解数学,培养数学精神和发现、创造的能力时,我们就把握住了数学教育的时代性、科学性,我们就深入到了数学素质教育的核心。伴随着CAI技术的日新月异,数学实验的教学内容将逐渐增加,实验素材库将不断壮大,实验技术将更为先进与精巧,因而数学实验的教学思想和模式将具有更为广阔的天地、更为重大的作为。