论文部分内容阅读
We experimentally study energy-pooling collision in the Rb-Cs vapour mixture at low densities in a cell. Atoms are excited to Rb(5P1/2) and Cs(6P3/2) states using two single-mode diode lasers. To isolate the heteronudear contribution in the fluorescence spectrum, a double-modulation technique is adopted. The excited-atom density and spatial distribution are mapped by monitoring the absorption of a counterpropagating single-mode diode laser beam, tuned to Rb(5P1/2 → 7S1/2) and Cs(6P3/2 → 8S1/2) transition, respectively, which could be translated parallel to the pump beams. The excited atom densities are combined with the measured fluorescence ratios to determine cross section for the energy-pooling process [i.e. Rb(5P1/2) +Cs (6P3/2) → Cs(8S1/2)+Rb (5S1/2)].The cross section is 3.79 × 10-14 cm2 ± 45%.