与自然数幂相关的数列和的求法

来源 :语数外学习·高中版上旬 | 被引量 : 0次 | 上传用户:andytong0123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  数列求和问题在高中数学中比较常见,此类问题的命题形式有很多种,如求数列等的前 n 项和,一般可采用错位相减法、公式法、裂项求和法、分组求和法等来求解.当遇到与自然数幂相关的数列求和问题时,该如何求和呢?
  如果数列的通项公式为,那么如何求这类与自然数幂相关的数列的和呢?我们不妨猜想它的表达式形式是这样的:,其中 C 和是待定的常数,那么该数列的 n -1项和为而,则,即.
  这也就是说只要将数列的表达式转变为含有的形式即可.由于该式对于任意的自然数 n 都成立,考虑到,当 k >n 是均有,
  显然这是一个递推公式,我们可以根据该递推公式求出所有的系数
  由(4)可得出如下的结论.
  結论:
  证明:
  可能有人会好奇,所有的推导都基于(1)式的猜想假说,怎么都没有证明这个猜想就直接得到最后的结论呢?这就是数学归纳法的“妙处”(4)式怎么得来的不重要,重要的是结论是否符合数学归纳法的流程.只要流程符合,那么该结论就成立.
  例 1.
  解:
  解答本题主要运用了上述结论.而运用该结论求得的结果与现已知的公式是一致的.
  例2.若数列的通项公式为,求该数列的前 n 项和.
  在历史上求自然数幂次方和有很多方法,比如说利用伯努利数表示法,李善兰的乘方垛堆积术.但是这里给出的形式和推导过程无疑是比较简洁的.
  例4.
  解:
  我们直接利用上述结论以及的具体表达式求得问题的答案,比采用常规方法求解便捷得多.
  与自然数幂相关的数列求和问题较为复杂,且求解过程繁琐,运用上述结论,其中,来求解,便能快速、直接得出问题的答案.
  (作者单位:浙江省宁波市咸祥中学)
其他文献
在我们的印象中,圆锥曲线中定值定点问题的计算繁琐,求解的思路难找,很多同学在解答圆锥曲线中的定值定点问题时,经常会无法顺利求得问题的答案.其实解答圆锥曲线中定值定点问题的关键是,从题目中的原始量,也就是题设中的点或者线入手,其他的点或者线都是根据原始量作相应的变动得到的,所以抓住原始量是解题的关键.下面我们通过几个例题来谈一谈如何寻找解题的切入口,找到原始量,并假设变量,解答圆锥曲线中的定值定点问
期刊
在解答三角函数问题时,经常需对三角函数式进行三角恒等变换,这就要求同学们熟练掌握一些进行三角恒等变换的技巧,以便能顺利化简三角函数式、求出三角函數式的值.那么怎样合理进行三角恒等变换呢?可以从以下三个方面进行.  一、变换角  当进行三角恒等变换时,首先要仔细观察已知角和所求角之间的差别,并建立两角之间的联系,如互余、互补、半角、倍角等,然后利用诱导公式、二倍角公式、两角的和差公式等求解.在进行角
期刊
函数问题的命题方式多种多样,但无论怎样变化,我们往往都需要借助函数的图象和性质来解题.函数中求参数的取值范围问题是一类常见题目,而解答此类问题的重要方法是借助函数的图象.借助函数的图象,我们可以快速明确函数的单调性、周期性、对称性、奇偶性、最值等,从而快速求得问题的答案.  例1.  解:根据题意绘制如图1所示的图形,  我们先通过导数法判断出函数的单调性,并确定函数的最值,这样便画出函数的大致图
期刊
选择题是一类常见的题型,其特点是不需要提供详细的解题过程,只需从四个选项中选择出正确的答案即可.在解题时,我们可根据选择题的特点,合理利用几个选项来快速求得问题的答案.本文重点介绍解答选择题的几个“妙招”,以帮助同学们迅速、简捷地解答选择题.  一、采用直接法  直接法是解答数学问题的常用方法,即根据题设和相关的定义、公式、定理等合理进行推理、计算,求得问题的答案.在运用直接法解题时,我们首先要仔
期刊
用一个平面去截几何体,此平面与几何体的交集,叫做这个几何体的截面.立体几何截面问题主要考查截面的形状、面积以及所截得两个几何体的体积.解答立体几何截面的面积问题,可以從不同角度去寻找解题思路,如利用平面几何知识、利用面积射影法等.本文结合一道例题来谈一谈求解立体几何截面的面积问题的两种思路.  例题:  由题意可知四边形BFD1E为长方体ABCD -A1B1C1D1 的截面,要求得四边形 BFD1
期刊
函数具有奇偶性、对称性、单调性、周期性等多种性质.在解题时,灵活运用函数的这些性质能顺利解答很多函数问题.本文结合3道例题谈一谈函数的性质在解题中的应用.  一、函数的对称性  若f(x-c)=f(x+c),则函数f(x)的图象关于直线x=c(c为常数)对称.在运用函数的对称性求解函数问题时,首先要对已知关系式进行变形,得到形如f(x-c)=f(x+c)或的式子,即可求得f(x)的对称轴和相对应的
期刊
数列最值问题的综合性较强,不仅考查了数列的性质、定义、通项公式、前 n 项和公式等,还考查了求最值的方法.数列最值问题通常有两种命题形式,一是求数列的最大项,二是求数列前 n 项和的最大值.本文结合实例,探讨一下这两类数列最值问题的求解思路.  一、求数列的最大(小)项  求数列的最大(小)项问题较为简单,只要明确数列中各项之间的规律,便可快速找出数列的最大(小)项.一般有两种思路:(1)将数列视
期刊
不等式恒成立问题的命题角度有很多,解法灵活,侧重于考查同学们的数学思维能力及应变能力.此类问题的综合性较强,难度较大,很多同学在遇到这一类问题时常常会束手无策.下面以一道含参不等式恒成立问题为例,谈一谈解答不等式恒成立问题的思路.  例题:已知函数,若对任意的实数x∈[1,+∞),f(x)≥-1恒成立,求实数a 的取值范围.  要求得 a 的取值范围,关键在于如何处理不等式,对其进行合理转化、变形
期刊
在解答比较复杂的代数問题时,我们通常会采用换元法来解题.引入一个辅助元,通过等量代换将题目简化,以实现化难为易、化繁为简.换元的方法有很多种,本文重点介绍三角换元、整体换元、均值换元三种换元方法.  一、三角换元  通过三角换元可把二元代数式转化成为三角函数式,再利用三角函数的性质和图象来解题.一般地,可设 x =a +r cos α、y =b +r sin α,借助重要三角函数式可将代数式转化为
期刊
基本不等式是高中数学中的重点知识,其应用范围较广,尤其在求最值时,运用基本不等式能使问题快速获解.而在运用基本不等式求最值时,我们需要注意以下两个问题.  一、把握应用基本不等式的条件  运用基本不等式求最值需把握三个条件:一正、二定、三相等.“一正”是指两个数或两个式子都是大于 0的;“二定”是指两个数或两个式子的积或和为定值;“三相等”指在两个数或两个式子相等时不等式可取等號.运用基本不等式求
期刊