论文部分内容阅读
创新是民族的灵魂,在数学教学中培养学生的创造思维,发展创造力是时代对我们教育提出的要求,在教学中如何激发学生的创新意识。接下来我就在教学中如何培养学生创造思维能力,我认为应从以下几点入手:
一、注意培养观察力
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观
察兴趣。
二、注意培养想象力
想象是思维探索的翅膀。爱因斯坦说:“想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。”在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。
想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。另外,还应指导学生掌握一些想象的方法,像类比、归纳等。著名的哥得
巴赫猜想就是通过归纳提出来的,而仿生学的诞生则是类比联想的典型实例。
三、注意培养发散思维
发散思维是指从同一来源材料探求不同答案的思维过程。它具有流畅性、变通性和创造性的特征。加强发散思维能力的训练是培养学生创造思维的重要环节。根据现代心理学的观点,一个人创造能力的大小,一般来说与他的发散思维能力是成正比例的。
在教学中,培养学生的发散思维能力一般可以从以下几个方面入手。比如训练学生对同一条件,联想多种结论;改变思维角度,进行变式训练;培养学生个性,鼓励创优创新;加强一题多解、一题多变、一题多思等。特别是近年来,随着开放性问题的出现,不仅弥补了以往习题发散训练的不足,同时也为发散思维注入了新的活力。如教学“角的和差”,已知两个角的度数求末知角度数,粗看是简单的角度数间的加减,似乎无新的意义,但如果能结合知识疑点,创设情境,那么学生就会被激起创新的欲望。如学生们从两个角拼摆中发现:“l个角与1个角拼在一起有3个角,l+l大于2,”继而探索3个角之间的关系。最后学生又用一付三角尺拼,寻找新的角,有的学生得到:
有的学生得到:
甚至于有的学生想到角的一条边可以看作一个180°的角来得到一组新的角:
还有的学生得到:180°+30°、180°+60°、180°+90°、180°+45°等一组角。甚至还有的学生与同桌合作,利用三角尺找到了更多新的角。
四、注意诱发学生的灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。
在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当应用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。如图:平行四边形ABCD被分成一个三角形与一个梯形,已知梯形面积比三角形面积多:18.6cm2,求平行四边形的面积。
这道题知道高的长度是解题的关键,可是凭已知条件较难求得高度。学生们大多采用了先列方程求高,再求平行四边形面积的方法。当时离下课还有5分钟,下面还有两道习题要讨论,教师肯定了方程解法后想换题了。这时,有一名“平时不出众”的学生举手说:“不用方程解,只要添条辅助线,用两步就可以求出面积了。”一些同学嘻嘻地笑了,对他的想法有些不屑一顾。教师让他来到黑板前,边画边讲,他说:“添了一条辅助线后所得到的小平行四边形就是三角形与梯形相差的面积。用18.6÷3求出高后再乘以15就可求得平行四边形ABCD的面积了。”
当他讲完后,学生们都用敬佩的眼光注视着他,教师也抚摸着他的头说:“你的设想真精彩,我们都为你感到骄傲,希望你今后再让大家多一些机会听听你的见解。”他的思路使其他同学受到启发,有的又想出了:利用大中行四边形的底边与小平行四边形底边的倍数关系,用18.6×(15÷3)计算面积,这时学生们自发地鼓起了掌。
这堂课在学生们满意的微笑中结束了。虽然后面的习题还没做完,但学生们创新思维的火花在闪亮。
总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。
一、注意培养观察力
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观
察兴趣。
二、注意培养想象力
想象是思维探索的翅膀。爱因斯坦说:“想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。”在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。
想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。另外,还应指导学生掌握一些想象的方法,像类比、归纳等。著名的哥得
巴赫猜想就是通过归纳提出来的,而仿生学的诞生则是类比联想的典型实例。
三、注意培养发散思维
发散思维是指从同一来源材料探求不同答案的思维过程。它具有流畅性、变通性和创造性的特征。加强发散思维能力的训练是培养学生创造思维的重要环节。根据现代心理学的观点,一个人创造能力的大小,一般来说与他的发散思维能力是成正比例的。
在教学中,培养学生的发散思维能力一般可以从以下几个方面入手。比如训练学生对同一条件,联想多种结论;改变思维角度,进行变式训练;培养学生个性,鼓励创优创新;加强一题多解、一题多变、一题多思等。特别是近年来,随着开放性问题的出现,不仅弥补了以往习题发散训练的不足,同时也为发散思维注入了新的活力。如教学“角的和差”,已知两个角的度数求末知角度数,粗看是简单的角度数间的加减,似乎无新的意义,但如果能结合知识疑点,创设情境,那么学生就会被激起创新的欲望。如学生们从两个角拼摆中发现:“l个角与1个角拼在一起有3个角,l+l大于2,”继而探索3个角之间的关系。最后学生又用一付三角尺拼,寻找新的角,有的学生得到:
有的学生得到:
甚至于有的学生想到角的一条边可以看作一个180°的角来得到一组新的角:
还有的学生得到:180°+30°、180°+60°、180°+90°、180°+45°等一组角。甚至还有的学生与同桌合作,利用三角尺找到了更多新的角。
四、注意诱发学生的灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。
在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当应用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。如图:平行四边形ABCD被分成一个三角形与一个梯形,已知梯形面积比三角形面积多:18.6cm2,求平行四边形的面积。
这道题知道高的长度是解题的关键,可是凭已知条件较难求得高度。学生们大多采用了先列方程求高,再求平行四边形面积的方法。当时离下课还有5分钟,下面还有两道习题要讨论,教师肯定了方程解法后想换题了。这时,有一名“平时不出众”的学生举手说:“不用方程解,只要添条辅助线,用两步就可以求出面积了。”一些同学嘻嘻地笑了,对他的想法有些不屑一顾。教师让他来到黑板前,边画边讲,他说:“添了一条辅助线后所得到的小平行四边形就是三角形与梯形相差的面积。用18.6÷3求出高后再乘以15就可求得平行四边形ABCD的面积了。”
当他讲完后,学生们都用敬佩的眼光注视着他,教师也抚摸着他的头说:“你的设想真精彩,我们都为你感到骄傲,希望你今后再让大家多一些机会听听你的见解。”他的思路使其他同学受到启发,有的又想出了:利用大中行四边形的底边与小平行四边形底边的倍数关系,用18.6×(15÷3)计算面积,这时学生们自发地鼓起了掌。
这堂课在学生们满意的微笑中结束了。虽然后面的习题还没做完,但学生们创新思维的火花在闪亮。
总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。