论文部分内容阅读
由于物理学研究的成果,它提供的科学思想、科学方法,以及对其他自然科学以及现代科学技术的深刻影响,物理学已成为自然科学和技术科学的基础。在中学教育中,物理教学也就成了自然科学教育科学素质教育的重头戏。物理学研究物质的各种运动形式及其相互转化的规律。学过物理的人都知道,力学是物理学中最古老、发展最早、最快的学科。它的发展推动了物理学其他学科的发展。而牛顿运动三定律是整个经典力学的基础。在所有普通物理教科书中,牛顿运动定律的教学都占有重要的篇幅,特别是中学物理。本文通过结合牛顿运动定律在教学中的地位和作用,强调在牛顿运动定律教学中实验的重要性。
力学教学是中学物理教学的入门和基础,因而作为动力学基础的牛顿定律,在中学物理教学中的基础地位是明确的。牛顿运动定律在中学物理教学中的地位和作用不仅表现为知识结构中的基础要性,更突出地表现在对学生科学思维素质的培养和分析问题、解决问题的能力培养方面。
首先,牛顿运动定律是学生第一次面对的重要科学定律,它所支配的运动又是学生常见的机械运动。学生在生活中接触到很多力以及物体的运动现象,已形成了一些感性的体验或看法。这些看法与科学概念可能相去甚远,有的还是错误的,但总归是已有相当的感性认识基础。如何以学生对现象的感性体验为背景,引导学生通过去粗取精,去伪存真,由表及里,从感性的认识上升为正确的理性认识,从而建立惯性、质量、动量、力以及惯性参考系等科学的概念及有关规律的科学认识。这对学生来说,是第一次经历的科学认识论的实践。因此,牛顿定律涉及到的概念与规律的教学,是学生进行辨证唯物主义认识论方面培养的良好载体。
其次,牛顿第二定律的突出特点是表述的简明性和应用的广泛性。背诵它的条文,记住公式轻而易举,但应用它去分析解决具体的力学问题,对大多数的初学者来说,并非易事。用正确的概念作为指导,对丰富多样的具体物体的具体运动,以及这个物体同周围物体的相互作用进行实事求是的分析,才可能正确地应用F=ma。这样一个十分好记的公式。对从初中升入高中的学生来说是一个极大的挑战。牛顿定律及其应用的教学,正好在引导学生迎接这一挑战的过程中,培养科学思维的素质,提高分析问题、解决问题的能力,为以后的物理教学打下良好的基础。
牛顿第二定律是一个矢量规律。力是矢量,加速度是矢量。学生第一次应用矢量规律,解决矢量运算的问题。矢量运算的解析法,是物理学中应用很广泛的教学方法。在进行牛顿定律及其应用的教学中,切实指导学生学会处理矢量运算的方法,掌握好分析,会应用解析方法建立矢量方程的分量式,从而解决问题,是对学生应用数学解决物理问题能力的培养。
物理实验在物理教学中占有十分重要的地位。它是物理教学的重要组成部分,是使教学形象化和直观化的重要措施,是帮助学生正确理解和掌握物理概念、物理规律的重要手段,同时培养学生的观察、分析、逻辑推理及动手能力。
牛顿运动定律也是教学过程中的重点和难点。学生对它理解掌握的好坏,直接影响整个物理的学习。如何解决这一点?是每个物理教师都在探索的问题。而实验是解决这一问题最有效、最可行的办法。
“一切物体在没有受到外力作用的时候,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。”这是牛顿第一运动定律。它是从天文观测中间接推导出来的结论,是物体运动所遵循的规律的抽象概括。由牛顿第一运动定律我们可以得出力不是运动的原因,而是运动状态改变的原因。物体为什么会运动?由于惯性。如果它原来是运动的,由于惯性它现在要保持这种运动状态。而这点恰恰和我们日常生活中的很多表面现象﹑思维习惯相违背。如“静止的球用脚踢它一下,它向前滚去,要使它一直向前运动,则需不停地用脚踢它,”很多同学就是从此类现象中得出了“力是使物体运动的原因”,也就是统治了人们二千多年的古希腊学者亚里斯多德的观点即他的“必须有力作用在物体上,物体才能运动,没有力的作用,物体就要静止下来”这一观点。如何改变学生的这种错误观念,从而正确深刻地理解牛顿第一运动定律?我们采用的办法是实验。在讲授牛顿运动第一定律这部分内容前,让学生观察下面的演示实验:让三辆小车从同样高的斜面上滑下,然后在毛巾﹑光滑的木板面﹑光滑的玻璃板面上运动。现象很明显:小车在光滑的玻璃板面上运动最远。这时再引导学生想象:玻璃板面更光滑时结果怎样?玻璃板面非常光滑对小车完全没有摩擦时结果怎样?从而很自然地推导出牛顿第一运动定律。
物体保持原有匀速直线运动状态或静止状态的这种性质称为惯性。牛顿第一律也称为惯性定律。质量是惯性大小的量度。质量越大的物体,运动状态越难以改变,则惯性越小。如停一部货车难于停一部出租车。我们就说货车的惯性大于出租车的惯性。再做一个趣味的演示实验,使学生更加明确关于惯性的概念:分别让生的、熟的、空的三只鸡蛋旋转,再迅速按住,使蛋停下,又立即松手,两只不动,另一只却能继续转动分别让松手后不动的两只蛋重新旋转,再用纸片压着其停下,一只难以停下,一只易停。可以判断:①分别让三只鸡蛋旋转,迅速按住使蛋停下,又立即松手,仍在转的为生鸡蛋。②分别让松手后不动的两只蛋重新旋转,再用纸片压其停下,难停的为熟鸡蛋,易停的可能是空蛋壳。生鸡蛋蛋壳停下时蛋清和蛋黄由于惯性要继续转。故松手后又带动蛋壳转;熟鸡蛋由于质量大,所以惯性大,难以停下;空蛋壳由于质量小,所以惯性小,易于停下。
由于牛顿第一运动定律,学生很容易就可以接受“力是物体产生加速度的原因”这一结论。这既是进一步明确力的概念,又为牛顿第二定律的学习做好准备。
我们要解决的问题是力与加速度之间确定的数量关系。而日常事例也告诉我们:当物体质量不变时,加速度的大小与外力成正比;当外力一定时,加速度的大小与物体的质量成反比。如:我们用不同的力去踢足球,力大时球运动的远一些,力小时球运动的近一些;用相同的力推铅球,大的铅球推得近一些,小的铅球则推得远一些。这些实例使我们准确地理解了牛顿第二运动定律。在这个基础上,再通过利用牛顿第二运动演示器或气垫导轨演示,得出牛顿第二运动定律,即“物体受到外力作用时,物体所获得的加速度的大小与合外力的大小成正比,并与物体的质量成正比,加速度的方向与合外力的方向相同。”这一定律及其数学表达式F=ma。
在牛顿三个运动定律中,表面分级最简单,最容易接受牛顿第三运动定律。力是存在于两物体间的相互作用,甲物体对乙物体有作用力,乙物体也必对甲物体有作用力。它们相互以对方作为自已存在的前提,不能独立地存在。我们把其中的任意一个力叫做作用力,另一个力叫做反作用力。根据牛顿第三运动定律:“物体间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。”但在实际应用中最容易出现问题的也是它。如在熟悉的“鸡蛋碰石头”这个问题中,对牛顿第三运动定律理解不深刻的同学认为“鸡蛋碎了,鸡蛋受的力大”;又如在“用手打人”问题中,总认为打人者占了便宜,被打者受的作用力大;在拨河比赛时,胜利方给对方的拉力大等错误的观念。力的大小虽是从力对物体的作用效果—物体运动速度的变化或形变来估量的。但是其效果的差异程度则除了与力的大小和力的作用时间有关,还与受力物体自身的因素(内因)有关。为能形象直观地让学生深刻地理解,掌握牛顿第三定律,教学中我们可采用课堂利用弹簧秤做演示实验,课后学生利用特制的“弹簧秤”做拔河比赛实验,验证牛顿第三运动定律,加深对定律的理解,正确地分析和解决有关的现象和问题。还有日常生活的例子,使学生能进一步理解这一定律。如人走路时,后脚总要向后蹬地,对地面有一个作用力;同时,地面对人也有一个作用力,正是这个作用力使人向前移动。游泳时,手臂用力向后划水,水对人也有力的作用,推动人向前游去。又如当你用手掌向下打击桌面时,用力越大,你的手就感到越疼。
从牛顿三个运动定律的教学我们可以看出,经过这类趣味的实验及典型事例可以促进学生积极思维,提高学生的兴趣,激励学生对知识的渴求,培养学生的动手能力,应用所学知识分析问题和解决问题的能力。
力学教学是中学物理教学的入门和基础,因而作为动力学基础的牛顿定律,在中学物理教学中的基础地位是明确的。牛顿运动定律在中学物理教学中的地位和作用不仅表现为知识结构中的基础要性,更突出地表现在对学生科学思维素质的培养和分析问题、解决问题的能力培养方面。
首先,牛顿运动定律是学生第一次面对的重要科学定律,它所支配的运动又是学生常见的机械运动。学生在生活中接触到很多力以及物体的运动现象,已形成了一些感性的体验或看法。这些看法与科学概念可能相去甚远,有的还是错误的,但总归是已有相当的感性认识基础。如何以学生对现象的感性体验为背景,引导学生通过去粗取精,去伪存真,由表及里,从感性的认识上升为正确的理性认识,从而建立惯性、质量、动量、力以及惯性参考系等科学的概念及有关规律的科学认识。这对学生来说,是第一次经历的科学认识论的实践。因此,牛顿定律涉及到的概念与规律的教学,是学生进行辨证唯物主义认识论方面培养的良好载体。
其次,牛顿第二定律的突出特点是表述的简明性和应用的广泛性。背诵它的条文,记住公式轻而易举,但应用它去分析解决具体的力学问题,对大多数的初学者来说,并非易事。用正确的概念作为指导,对丰富多样的具体物体的具体运动,以及这个物体同周围物体的相互作用进行实事求是的分析,才可能正确地应用F=ma。这样一个十分好记的公式。对从初中升入高中的学生来说是一个极大的挑战。牛顿定律及其应用的教学,正好在引导学生迎接这一挑战的过程中,培养科学思维的素质,提高分析问题、解决问题的能力,为以后的物理教学打下良好的基础。
牛顿第二定律是一个矢量规律。力是矢量,加速度是矢量。学生第一次应用矢量规律,解决矢量运算的问题。矢量运算的解析法,是物理学中应用很广泛的教学方法。在进行牛顿定律及其应用的教学中,切实指导学生学会处理矢量运算的方法,掌握好分析,会应用解析方法建立矢量方程的分量式,从而解决问题,是对学生应用数学解决物理问题能力的培养。
物理实验在物理教学中占有十分重要的地位。它是物理教学的重要组成部分,是使教学形象化和直观化的重要措施,是帮助学生正确理解和掌握物理概念、物理规律的重要手段,同时培养学生的观察、分析、逻辑推理及动手能力。
牛顿运动定律也是教学过程中的重点和难点。学生对它理解掌握的好坏,直接影响整个物理的学习。如何解决这一点?是每个物理教师都在探索的问题。而实验是解决这一问题最有效、最可行的办法。
“一切物体在没有受到外力作用的时候,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。”这是牛顿第一运动定律。它是从天文观测中间接推导出来的结论,是物体运动所遵循的规律的抽象概括。由牛顿第一运动定律我们可以得出力不是运动的原因,而是运动状态改变的原因。物体为什么会运动?由于惯性。如果它原来是运动的,由于惯性它现在要保持这种运动状态。而这点恰恰和我们日常生活中的很多表面现象﹑思维习惯相违背。如“静止的球用脚踢它一下,它向前滚去,要使它一直向前运动,则需不停地用脚踢它,”很多同学就是从此类现象中得出了“力是使物体运动的原因”,也就是统治了人们二千多年的古希腊学者亚里斯多德的观点即他的“必须有力作用在物体上,物体才能运动,没有力的作用,物体就要静止下来”这一观点。如何改变学生的这种错误观念,从而正确深刻地理解牛顿第一运动定律?我们采用的办法是实验。在讲授牛顿运动第一定律这部分内容前,让学生观察下面的演示实验:让三辆小车从同样高的斜面上滑下,然后在毛巾﹑光滑的木板面﹑光滑的玻璃板面上运动。现象很明显:小车在光滑的玻璃板面上运动最远。这时再引导学生想象:玻璃板面更光滑时结果怎样?玻璃板面非常光滑对小车完全没有摩擦时结果怎样?从而很自然地推导出牛顿第一运动定律。
物体保持原有匀速直线运动状态或静止状态的这种性质称为惯性。牛顿第一律也称为惯性定律。质量是惯性大小的量度。质量越大的物体,运动状态越难以改变,则惯性越小。如停一部货车难于停一部出租车。我们就说货车的惯性大于出租车的惯性。再做一个趣味的演示实验,使学生更加明确关于惯性的概念:分别让生的、熟的、空的三只鸡蛋旋转,再迅速按住,使蛋停下,又立即松手,两只不动,另一只却能继续转动分别让松手后不动的两只蛋重新旋转,再用纸片压着其停下,一只难以停下,一只易停。可以判断:①分别让三只鸡蛋旋转,迅速按住使蛋停下,又立即松手,仍在转的为生鸡蛋。②分别让松手后不动的两只蛋重新旋转,再用纸片压其停下,难停的为熟鸡蛋,易停的可能是空蛋壳。生鸡蛋蛋壳停下时蛋清和蛋黄由于惯性要继续转。故松手后又带动蛋壳转;熟鸡蛋由于质量大,所以惯性大,难以停下;空蛋壳由于质量小,所以惯性小,易于停下。
由于牛顿第一运动定律,学生很容易就可以接受“力是物体产生加速度的原因”这一结论。这既是进一步明确力的概念,又为牛顿第二定律的学习做好准备。
我们要解决的问题是力与加速度之间确定的数量关系。而日常事例也告诉我们:当物体质量不变时,加速度的大小与外力成正比;当外力一定时,加速度的大小与物体的质量成反比。如:我们用不同的力去踢足球,力大时球运动的远一些,力小时球运动的近一些;用相同的力推铅球,大的铅球推得近一些,小的铅球则推得远一些。这些实例使我们准确地理解了牛顿第二运动定律。在这个基础上,再通过利用牛顿第二运动演示器或气垫导轨演示,得出牛顿第二运动定律,即“物体受到外力作用时,物体所获得的加速度的大小与合外力的大小成正比,并与物体的质量成正比,加速度的方向与合外力的方向相同。”这一定律及其数学表达式F=ma。
在牛顿三个运动定律中,表面分级最简单,最容易接受牛顿第三运动定律。力是存在于两物体间的相互作用,甲物体对乙物体有作用力,乙物体也必对甲物体有作用力。它们相互以对方作为自已存在的前提,不能独立地存在。我们把其中的任意一个力叫做作用力,另一个力叫做反作用力。根据牛顿第三运动定律:“物体间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。”但在实际应用中最容易出现问题的也是它。如在熟悉的“鸡蛋碰石头”这个问题中,对牛顿第三运动定律理解不深刻的同学认为“鸡蛋碎了,鸡蛋受的力大”;又如在“用手打人”问题中,总认为打人者占了便宜,被打者受的作用力大;在拨河比赛时,胜利方给对方的拉力大等错误的观念。力的大小虽是从力对物体的作用效果—物体运动速度的变化或形变来估量的。但是其效果的差异程度则除了与力的大小和力的作用时间有关,还与受力物体自身的因素(内因)有关。为能形象直观地让学生深刻地理解,掌握牛顿第三定律,教学中我们可采用课堂利用弹簧秤做演示实验,课后学生利用特制的“弹簧秤”做拔河比赛实验,验证牛顿第三运动定律,加深对定律的理解,正确地分析和解决有关的现象和问题。还有日常生活的例子,使学生能进一步理解这一定律。如人走路时,后脚总要向后蹬地,对地面有一个作用力;同时,地面对人也有一个作用力,正是这个作用力使人向前移动。游泳时,手臂用力向后划水,水对人也有力的作用,推动人向前游去。又如当你用手掌向下打击桌面时,用力越大,你的手就感到越疼。
从牛顿三个运动定律的教学我们可以看出,经过这类趣味的实验及典型事例可以促进学生积极思维,提高学生的兴趣,激励学生对知识的渴求,培养学生的动手能力,应用所学知识分析问题和解决问题的能力。