论文部分内容阅读
设G(V,E)为阶数至少是3的简单连通图,若f是图G的k-正常边染色,使得对任意的uv∈E(G),C(u)≠C(v),那么称f是图G的k-邻点可区别边染色(k-ASEC),其中C(u)={f(uw)|uw∈E(G)},而aχs′(G)=min{k|存在G的一个k-ASEC},称为G的邻点可区别边色数.给出多重联图Sm∨Pn∨Pn的邻点可区别边色数.