利用模型的等效实现复杂的问题简单化

来源 :中学物理·高中 | 被引量 : 0次 | 上传用户:ssss456744
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  物理现象、物理过程往往很复杂,学生常常感到束手无策.但无论多么复杂,我们抓住它的实质,透过现象看到本质.利用联想、类比等方法,建立其物理模型,是解答物理题的关键.提高学生建模能力,是我们亟待解决的问题.
  1利用类比思维,实现规律的等效
  在处理物理问题的过程中,常会遇到这样的情况:当题中所述物理过程或所给图形比较生疏,导致处理比较困难,我们通过类比思想找出相似之处,都遵从相同的规律,问题就迎刃而解了.
  例题1(2013年全国新课标卷25题)如图1,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系.
  解此题为高考物理压轴题,第二问乍一看难度较大.仔细体会,和平时练习中所做的习题下面模型类似.
  类比轨道水平光滑,杆ab质量为m,电阻不计,杆长为L,拉力F恒定,推导杆的运动性质.(如图2)
  仔细分析高考题第二问,类比上面问题,重力分力相当于力F做动力,仍受安培力,多了一个摩擦力.求出加速度恒定,v=at即可.
  例题2如图3所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙壁相切于A点,竖直墙壁上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的圆心.D是圆环上与M靠得很近的一点(DM远小于CM).已知在同一时刻,a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道运动到M点;c球由C点自由下落到M点;d球从D点由静止出发沿圆环运动到M点.则
  A.a球最先到达M点B.b球最先到达M点
  C.c球最先到达M点D.d球最先到达M点
  解析找a、b两小球时间关系,一种方案可类比自由弦判断出a先到M处,另一种方案可类比物体沿底边相同,斜边不同的光滑斜面下滑,倾角为45°时用时间最短.找d到M时间类似单摆,用时1/4周期,对比自由弦D到M和A到M时间相等.
  类比如图4所示,圆柱形的仓库内有三块长度不同的滑板aO、bO、cO,其下端都固定于底部圆心O,而上端则搁在仓库侧壁上,三块滑板与水平面的夹角依次是30°、45°、60°.若有三个小孩同时从a、b、c处开始下滑(忽略阻力),则
  A.a处小孩最后到O点B.b处小孩最后到O点
  C.c处小孩最先到O点D.a、c处小孩同时到O点
  此题表面复杂实质就是物体沿底边相同,斜边不同的光滑斜面下滑的模型.
  2利用类比思维,实现模型的等效
  学生在处理电磁学问题时,往往感到很难,常常觉得束手无策,可是要建立起模型,进行类比研究,往往使问题简单化.
  例题3如图5所示为磁悬浮列车模型,质量M=1 kg的绝缘板底座静止在动摩擦因数μ1=0.1的粗糙水平地面上.位于磁场中的正方形金属框ABCD为动力源,其质量m=1 kg,边长为1 m,电阻为1/16 Ω,与绝缘板间的动摩擦因数μ2=0.4,OO’为AD、BC的中线.在金属框内有可随金属框同步移动的磁场,OO’CD区域内的磁场如图6所示,CD恰在磁场边缘以外OO’BA区域内的磁场如图7所示,AB恰在磁场边缘以内(g=10 m/s2).若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,则金属框从静止释放后
  本题正答率很低,而下面一题正答率很高,仔细体会,实质都是相对滑动模型,究其原因,学生对例3不能建立起模型.利用类比思想,提高学生建模能力很关键.
其他文献
弹簧试题涉及动力学问题、动量守恒和能量守恒问题、振动问题等.对于弹簧,从受力角度来看,弹簧上的弹力是变力;从能量角度来看,弹簧是储能元件.因此,弹簧问题能很好地考查学生的综合分析能力,学生对这类问题常常显得不知从何处下手.现将有关弹簧问题进行分类剖析.  1以弹力影响物体的运动  例1一弹簧秤秤盘的质量M=1.5 kg,盘内放一个质量m=10.5 kg的物体P,弹簧质量忽略不计,轻弹簧的劲度系数k
依据《初中物理课程标准》的要求,以习题为主的笔试仍然是课程评价的主要手段,因此,习题教学是物理教学不可或缺的一部分,它是深化物理基础知识的通道,是联系概念、规律的纽带,是感性认识至理性认识的必由之路但是,对习题教学的过度强调使得它的地位已经胜过概念、规律教学;对物理习题的不当操作使得它成为一种重复性的、几乎脱离实际的笔试训练,甚至使学生厌学要改变这种状况,可以尝试在习题教学中融入探究下面笔者就自身
莫言的新书《我们的荆轲》问世不久,各种仿作便如雨后春笋般破土而出——只看封面,会以为它们是系列丛书。对初学者来说,模仿无可厚非,令人悲哀的是,很多所谓的成熟作者也抛
在高中物理竞赛中关于线状相交物系交叉点速度的求解是一种常规题,但它更多的会用到一些数学工具来巧妙求解,在高考中有时也涉及到线状相交物系交叉点速度的求解,但往往是一些相对简单的应用.速度如何按效果分解,往往成为高考解决某些综合问题的关键,有一种常见的方法是微元法,设想通过极短的时间,物体发生一个微小位移,将位移垂直分解,得到位移矢量图,再从中找到对应的速度垂直分解的矢量图,进而求出物体间速度大小的关
近几年,笔者在初中物理教学中对实验的教学慢慢体会,终于有了点滴的心得,望能起到抛砖引玉的作用。  1“知之者不如好之者”——激发兴趣,是教学永恒的主题  初中物理教材中,有很多有趣的演示实验和探究性实验,实验现象中丰富多彩,能很大程度的吸引学生的注意力,激发学生的求知欲,例如在九年级第十三章《 内能》中的分子吸引力演示实验时,我叫一位学生将两铅块的一端(老师用小刀削平后)压紧,放开,一点也没有显示
创设有效的问题情境是优化课堂效率的重要手段在教学中将要学习知识外显的特征在特定的情境中呈现,使学生观察和分析问题时与旧有的认知经验发生冲突,诱发求知欲望,导致认知结构的改组或重建而问题情境是否真正有效,以学生是否积极参与课堂学习活动,是否能有效激发大多数学生的思维,按照一定的逻辑顺序有效建构知识并最终达成教学目标来体现的实验表明:并不是任何问题都能激发学生有意注意心向的,也不能随意把问题提出来就能
考试说明要求学生“能够独立的对所遇到的问题进行分析、研究,弄清其中的物理状态、物理过程和物理问题的本质,建立适当的物理模型,找到解决问题的方法”.建立理想化物理模型,作为一种重要的物理研究方法,其实质是对现实复杂的实体或实体过程进行简化,抓住主要因素,舍掉次要因素,从而揭示物理本质.  “轻质”一词在高中物理所处理的力学问题中频繁出现,是一种典型的理想化模型.比如对于轻绳,认为其张力处处相同,所以
“牵羊只牵头.”rn“擒贼先擒王”,也许丰子恺大师是烂熟于心的,可是他可不知道牵羊也有这样的规律.农民以农为生,他们牵过的羊肯定比大师画过的多,因此知道这一规律不足为奇
在高中阶段,一些复杂问题的物理规律有时会与较为简单的另一类问题相似,这时我们可以采取“等效”的思想,利用较简单问题得到的规律来处理这些较为复杂的问题,从而使问题简单化,便于学生接受和掌握.下面笔者结合例题谈一谈“等效法”在高中物理习题中的应用.  1等效“光路”  例1如图1,在军事演习中,特种部队从公路上的A点出发,欲奔袭前方沙滩上的目标B,目标B距公路的距离BC=2000 m,部队出发点A到C
滑块与斜面体模型的受力分析在高考中经常出现,学生对这类问题还是感觉比较困难,特别是其中摩擦力的确定,是考查的重点也是难点.实际上,滑块与斜面体模型中,只要从物体初始状态发掘出关键条件,再讨论当条件变化之后物体的受力情况,问题也就迎刃而解了.下面就滑块与斜面体模型中的几个典型例题,探讨一下这个模型中物体的受力特点和分析方法.  1平衡状态下滑块与斜面体的受力分析  例1如图1所示,一质量为m的滑块恰