多步RUNGE-KUTTA方法相关论文
Volterra积分方程和积分微分方程在描述生物、物理、系统控制等领域中的诸多现象时起着重要的作用.由于解析求解的困难性,它们的数......
给出多步Runge-Kutta方法关于线性Hamilton系统是线性辛的一些必要条件....
设X是实(或复)Hilbert空间,与‖·‖分别为X中的内积与相应的内积范数,考虑在X中有如下形式的一类非线性泛函微分与泛函方程初值问......
脉冲微分方程(IDEs)广泛应用于生态动力学、医学、经济学、自动控制等领域.由于脉冲微分方程的真解难以获得,因而其数值方法的研究......
泛函积分微分方程(FIDEs)广泛应用于医学、生态学、化学、电力系统等领域,因此FIDEs的研究倍受学者关注.由于很多FIDEs很难求出其......
刚性常微分方程是描述科学与工程中许多现象的方程,以前求解常微分方程的数值方法多是针对非刚性问题而提出的,对刚性方程,很多方......
非延迟积分微分方程(IDEs)广泛出现于物理、生物、医学及经济等领域,其数值算法及理论研究至今已延续了二十几年,大量优秀成果已见......
延迟微分代数方程(DDAEs)是具有时滞影响和代数约束的微分系统,广泛的应用于电路分析,计算机辅助设计,多体力学系统的实时仿真,化......
延迟积分微分方程广泛出现于物理、工程、生物、医学、航天航空及经济等领域,其算法理论研究具有毋庸置疑的重要性,近年来逐渐引起众......
一类重要的常微分方程源自用线方法求解非线性双曲型偏微分方程,这类常微分方程的解具有单调性,因此要求数值方法能保持原系统的这......
延迟微分代数方程(DDAEs)广泛出现于科学与工程应用领域. 本文将多步Runge-Kutta方法应用于求解线性常系数延迟微分代数方程,讨论......
将(k,l)-代数稳定的多步Runge-Kutta方法应用于非线性沃尔泰拉延迟积分微分方程,讨论了该方法的数值散逸性,并获得了(k,l)-代数稳......
在对步长作了一定的限制下研究了一类多步Runge-Kutta方法的保单调性,并得到了此类多步Runge-Kutta方法的保单调的充分条件,最后给出......
给出多步Runge-Kutta方法关于线性Hamilton系统是线性辛的一些必要条件。...
本文研究了多步Runge-Kutta方法稳定矩阵的有界性质和逼近性质及应用,所获结果为Runge-Kutta方法相应结果的推广。......
针对一类泛函积分微分方程,研究其多步Runge-Kutta方法的数值稳定性,获得了代数稳定的多步Runge-Kutta方法是稳定和渐近稳定的充分......